Aufsätze

Dauerhafte URI für die Sammlunghttps://openumwelt.de/handle/123456789/6

Listen

Suchergebnisse

Gerade angezeigt 1 - 2 von 2
  • Vorschaubild
    Veröffentlichung
    Why are nanomaterials different and how can they be appropriately regulated under REACH?
    (2014) Schwirn, Kathrin; Beer, Inga; Tietjen, Lars
    Background

    For nanomaterials, not only their chemical composition but also their morphological properties and surface properties determine their characteristics. These properties do not only differ in comparison to the corresponding bulk material but also between different nanoforms of the same substance. Changes in these physico-chemical characteristics can cause changes in chemical properties, reactivity, (photo-) catalytic activities and energetic properties and in turn alter their (eco-) toxicity, fate and behaviour in environmental media and toxico-kinetics. Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) deals with chemical substances in general and although there are no special provisions that explicitly refer to nanomaterials, they are principally covered by REACH. In October 2012, the European Commission published the Second Regulatory Review on Nanomaterials. In February 2013, the REACH Review from the European Commission was published. Both papers address questions about the regulation of nanomaterials in REACH. The Commission proposes to improve the future situation by adaptation of the REACH Regulation. However, the European Commission plans to revise the annexes only and not the main text of the regulation.

    Results and conclusions

    In this publication, the authors present their considerations and recommendations on how REACH can adequately be adapted to nanomaterials. In the author's view, the bulk form and nanoforms of the same chemical composition should be treated as the same substance in the context of REACH. However, the regulation of nanomaterials under REACH has to meet specific requirements. Taking into account the plurality of physico-chemical characteristics and resulting changes in the hazard profile, an approach must be found to adequately cover nanomaterials under REACH. Accordingly, the REACH information requirements have to be adapted. This includes lower tonnage thresholds for different REACH obligations (e.g. registration, chemical safety report) which are justified by highly dispersed use together with low mass application, linked with the uncertainties regarding (eco-) toxicity, environmental fate and exposure. If the physico-chemical characteristics of different nanoforms of the same substance differ in a relevant manner they have to be considered separately for further test performance and REACH requirements.
    Quelle: http://www.enveurope.com/

  • Veröffentlichung
    Test strategy for assessing the risks of nanomaterials in the environment considering general regulatory procedures
    (2015)
    Background:
    Engineered nanomaterials (ENMs) are marketed as a substance or mixtures and are additionally used due to their active agent properties in products such as pesticides or biocides, for which specific regulations apply. Currently, there are no specific testing strategies for environmental fate and effects of ENMs within the different regulations. An environmental test and risk assessment strategy for ENMs have been developed considering the general principles of chemical assessment.
    Results:
    The test strategy has been developed based on the knowledge of national and international discussions. It also takes into account the conclusions made by the OECD WPMN which held an expert meeting in January 2013. For the test strategy development, both conventional and alternative endpoints were discussed and environmental fate and effects were addressed separately.
    Conclusion:
    A tiered scheme as commonly used in the context of precautionary environmental risk assessment was suggested including the use of mathematical models and trigger values to either stop the procedure or proceed to the next tier. There are still several gaps which have to be filled, especially with respect to fate, to develop the test strategy further. The test strategy features a general approach. It is not specified to fulfil the information requirements of certain legislation (e.g. plant protection act, biocide regulation, REACH). However, the adaption of single elements of the strategy to the specific needs of certain legislation will provide a valuable contribution in relation to the testing of nanomaterials.Quelle: http://enveurope.springeropen.com/