Listen
26 Ergebnisse
Suchergebnisse
Veröffentlichung Lead, cadmium, mercury, and chromium in urine and blood of children and adolescents in Germany - Human biomonitoring results of the German Environmental Survey 2014-2017 (GerES V)(2021) Doyle, Ulrike; Höra, Christian; Kämpfe, Alexander David; Kolossa-Gehring, Marike; Murawski, Aline; Rucic, Enrico; Schmied-Tobies, Maria Irene Hilde; Vogel, NinaMetals reach humans through food and drinking water intake and inhalation of airborne particles and can have detrimental health effects in particular for children. The metals presented here (lead, cadmium, chromium, and mercury) could lead to toxic effects such as neurotoxicity, mutagenicity, and have been classified as (possible) carcinogens. Using population representative data from the German Environmental Survey 2014-2017 (GerES V) from 3- to 17-year-old children on lead and cadmium in blood (n = 720) and on cadmium, chromium, and mercury in urine (n = 2250) we describe current internal exposure levels, and socio-demographic and substance-specific exposure determinants. Average internal exposure (geometric means) in blood was 9.47 (micro)g/L for lead and below 0.06 (micro)g/L (limit of quantification) for cadmium, and in urine 0.072 (micro)g/L for cadmium, 0.067 (micro)g/L for mercury, and 0.393 (micro)g/L for chromium, respectively. Younger children have higher concentrations of lead and chromium compared to 14-17-year-old adolescents, and boys have slightly higher mercury concentrations than girls. With respect to substance specific determinants, higher lead concentrations emerged in participants with domestic fuel and in non-smoking children with smokers in the household, higher levels of cadmium were associated with smoking and vegetarian diet and higher levels of mercury with the consumption of seafood and amalgam teeth fillings. No specific exposure determinants emerged for chromium. The health based guidance value HBM-I was not exceeded for mercury and for cadmium in urine it was exceeded by 0.6% of the study population. None of the exceedances was related to substantial tobacco smoke exposure. Comparisons to previous GerES cycles (GerES II, 1990-1992; GerES IV, 2003-2006) indicate continuously lower levels. © 2021 Elsevier GmbHVeröffentlichung HBM4EU combines and harmonises human biomonitoring data across the EU, building on existing capacity(2021) Gilles, Liese; Fiddicke, Ulrike; Govarts, Eva; Rambaud, Loïc; Kolossa-Gehring, Marike; Vogel, NinaAs part of the Human Biomonitoring for Europe (HBM4EU) initiative a human biomonitoring (HBM) survey is conducted in 21 countries. This survey builds on existing HBM capacity in Europe by aligning national or regional HBM studies. The survey targets 3 age groups (i) children aged 6-11 years, (ii) teenagers aged 12-19 years and (iii) young adults aged 20-39 years and includes a total of 9493 participants (3151 children, 2953 teenagers and 3389 young adults). Depending on the age group, internal exposure to phthalates and substitute Hexamoll® DINCH, brominated and organophosphorus flame retardants, per-/poly-fluorinated compounds, cadmium, bisphenols and/or polycyclic aromatic hydrocarbons are assessed. The main goal of the programme is to obtain quality controlled and comparable HBM data of exposure to chemicals, prioritized under HBM4EU, with European wide coverage to inform the development of environment and health policies. This paper describes the framework of the HBM4EU survey and the approach that has been applied to align European HBM initiatives across Europe. © 2021 The Authors. Published by Elsevier GmbH.Veröffentlichung The role of dietary factors on blood lead concentration in children and adolescents - Results from the nationally representative German Environmental Survey 2014-2017 (GerES V)(2022) Hahn, Domenica; Höra, Christian; Kämpfe, Alexander David; Kolossa-Gehring, Marike; Schmied-Tobies, Maria Irene Hilde; Vogel, NinaIn industrialized nations, human lead exposure has decreased significantly in recent decades. Nevertheless, due to its toxic effects, this heavy metal remains a public health concern with children and adolescents being particularly at risk. In Europe nowadays, oral intake via food and drinking water is the predominant exposure pathway for lead. The objective of the present study was to investigate the association between dietary factors and blood lead (PbB) level of 3- to 17-year-old children and adolescents living in Germany, using data from the fifth German Environmental Health Survey (GerES V) and the Child and Adolescent Health Survey (KiGGS Wave 2). GerES V and KiGGS Wave 2 are two national population-representative studies conducted between 2014 and 2017, including measurement of lead concentrations in blood from 720 children and adolescents aged 3-17 years (mean age = 10.21, SD age = 4.36). Using multiple linear regression, sociodemographic and environmental characteristics as well as dietary factors could be identified as significant exposure determinants of PbB concentrations. Lead intake via domestic tap water was the strongest predictor of elevated PbB levels with 27.6% (p-value< .001) higher concentrations of highest compared to none lead intake via tap water. Other foods which were found to be relevant to PbB levels were meat, fruit, and fruit juice. While meat or fruit consumption were each associated with about 13% (p-value < .05) lower PbB levels, fruit juice drinking was associated with up to 12.2% (p-value = .04) higher PbB levels. In conclusion, results indicate the importance of dietary habits for lead exposure in children and adolescents. To protect vulnerable groups, it is recommended that future research and lead-reducing measures pay more attention to dietary links. © 2022 The Authors.Veröffentlichung Risk assessment of dietary exposure to organophosphorus flame retardants in children by using HBM-Data(2022) Plichta, Veronika; Kolossa-Gehring, Marike; Steinwider, Johann; Vogel, Nina; Weber, TillDue to their extensive usage, organophosphorus flame retardants (OPFRs) have been detected in humans and in the environment. Human are exposed to OPFRs via inhalation of indoor air, dust uptake or dietary uptake through contaminated food and drinking water. Only recently, few studies addressing dietary exposure to OPFRs were published. In this study, we used human biomonitoring (HBM) data of OPFRs to estimate how much the dietary intake may contribute to the total exposure. We estimated by reverse dosimetry, the daily intake of tris (2-chloroethyl) phosphate (TCEP), tris (1-chloro-2-propyl) phosphate (TCIPP), tris (1,3-dichloro-2-propyl) phosphate (TDCIPP) for children using HBM data from studies with sampling sites in Belgium, Denmark, France, Germany, Slovenia and Slovakia. For estimating the dietary exposure, a deterministic approach was chosen. The occurrence data of selected food categories were used from a published Belgium food basket study. Since the occurrence data were left-censored, the Lower bound (LB)-Upper bound (UB) approach was used. The estimated daily intake (EDI) calculated on the basis of urine metabolite concentrations ranged from 0.03 to 0.18 (micro)g/kg bw/d for TDCIPP, from 0.05 to 0.17 (micro)g/kg bw/d for TCIPP and from 0.02 to 0.2 (micro)g/kg bw/d for TCEP. Based on national food consumption data and occurrence data, the estimated dietary intake for TDCIPP ranged from 0.005 to 0.09 (mircro)g/kg bw/d, for TCIPP ranged from 0.037 to 0.2 (mirco)g/kg bw/d and for TCEP ranged from 0.007 to 0.018 (mirco)g/kg bw/d (summarized for all countries). The estimated dietary intake of TDCIPP contributes 11-173% to the EDI, depending on country and LB-UB scenario. The estimated dietary uptake of TCIPP was in all calculations, except in Belgium and France, above 100%. In the case of TCEP, it is assumed that the dietary intake ranges from 6 to 57%. The EDI and the estimated dietary intake contribute less than 3% to the reference dose (RfD). Therefore, the estimated exposure to OPFRs indicates a minimal health risk based on the current knowledge of available exposure, kinetic and toxicity data. We were able to show that the dietary exposure can have an impact on the general exposure based on our underlying exposure scenarios. © 2022 by the authorsVeröffentlichung Harmonization of Human Biomonitoring Studies in Europe: characteristics of the HBM4EU-aligned studies participants(2022) Gilles, Liese; Govarts, Eva; Rodriguez Martin, Laura; Kolossa-Gehring, Marike; Peisker, Jasmin; Rucic, Enrico; Rüther, Maria; Vogel, Nina; Weber, TillHuman biomonitoring has become a pivotal tool for supporting chemicals' policies. It provides information on real-life human exposures and is increasingly used to prioritize chemicals of health concern and to evaluate the success of chemical policies. Europe has launched the ambitious REACH program in 2007 to improve the protection of human health and the environment. In October 2020 the EU commission published its new chemicals strategy for sustainability towards a toxic-free environment. The European Parliament called upon the commission to collect human biomonitoring data to support chemical's risk assessment and risk management. This manuscript describes the organization of the first HBM4EU-aligned studies that obtain comparable human biomonitoring (HBM) data of European citizens to monitor their internal exposure to environmental chemicals. The HBM4EU-aligned studies build on existing HBM capacity in Europe by aligning national or regional HBM studies. The HBM4EU-aligned studies focus on three age groups: children, teenagers, and adults. The participants are recruited between 2014 and 2021 in 11 to 12 primary sampling units that are geographically distributed across Europe. Urine samples are collected in all age groups, and blood samples are collected in children and teenagers. Auxiliary information on socio-demographics, lifestyle, health status, environment, and diet is collected using questionnaires. In total, biological samples from 3137 children aged 6-12 years are collected for the analysis of biomarkers for phthalates, HEXAMOLL® DINCH, and flame retardants. Samples from 2950 teenagers aged 12-18 years are collected for the analysis of biomarkers for phthalates, Hexamoll® DINCH, and per- and polyfluoroalkyl substances (PFASs), and samples from 3522 adults aged 20-39 years are collected for the analysis of cadmium, bisphenols, and metabolites of polyaromatic hydrocarbons (PAHs). The children's group consists of 50.4% boys and 49.5% girls, of which 44.1% live in cities, 29.0% live in towns/suburbs, and 26.8% live in rural areas. The teenagers' group includes 50.6% girls and 49.4% boys, with 37.7% of residents in cities, 31.2% in towns/suburbs, and 30.2% in rural areas. The adult group consists of 52.6% women and 47.4% men, 71.9% live in cities, 14.2% in towns/suburbs, and only 13.4% live in rural areas. The study population approaches the characteristics of the general European population based on age-matched EUROSTAT EU-28, 2017 data; however, individuals who obtained no to lower educational level (ISCED 0-2) are underrepresented. The data on internal human exposure to priority chemicals from this unique cohort will provide a baseline for Europe's strategy towards a non-toxic environment and challenges and recommendations to improve the sampling frame for future EU-wide HBM surveys are discussed. © 2022 by the authorsVeröffentlichung Trends of exposure to acrylamide as measured by urinary biomarkers levels within the HBM4EU Biomonitoring Aligned Studies (2000-2021)(2022) Poteser, Michael; Kolossa-Gehring, Marike; Laguzzi, Federica; Schettgen, Thomas; Murawski, Aline; Rüther, Maria; Schmidt, Phillipp; Vogel, Nina; Weber, TillAcrylamide, a substance potentially carcinogenic in humans, represents a very prevalent contaminant in food and is also contained in tobacco smoke. Occupational exposure to higher concentrations of acrylamide was shown to induce neurotoxicity in humans. To minimize related risks for public health, it is vital to obtain data on the actual level of exposure in differently affected segments of the population. To achieve this aim, acrylamide has been added to the list of substances of concern to be investigated in the HBM4EU project, a European initiative to obtain biomonitoring data for a number of pollutants highly relevant for public health. This report summarizes the results obtained for acrylamide, with a focus on time-trends and recent exposure levels, obtained by HBM4EU as well as by associated studies in a total of seven European countries. Mean biomarker levels were compared by sampling year and time-trends were analyzed using linear regression models and an adequate statistical test. An increasing trend of acrylamide biomarker concentrations was found in children for the years 2014-2017, while in adults an overall increase in exposure was found to be not significant for the time period of observation (2000-2021). For smokers, represented by two studies and sampling for, over a total three years, no clear tendency was observed. In conclusion, samples from European countries indicate that average acrylamide exposure still exceeds suggested benchmark levels and may be of specific concern in children. More research is required to confirm trends of declining values observed in most recent years. © 2022 by the authorsVeröffentlichung Time trends of acrylamide exposure in Europe: combined analysis of published reports and current HBM4EU Studies(2022) Poteser, Michael; Hahn, Domenica; Laguzzi, Federica; Kolossa-Gehring, Marike; Schettgen, Thomas; Vogel, Nina; Weber, Till; Zimmermann, PhilippMore than 20 years ago, acrylamide was added to the list of potential carcinogens found in many common dietary products and tobacco smoke. Consequently, human biomonitoring studies investigating exposure to acrylamide in the form of adducts in blood and metabolites in urine have been performed to obtain data on the actual burden in different populations of the world and in Europe. Recognizing the related health risk, the European Commission responded with measures to curb the acrylamide content in food products. In 2017, a trans-European human biomonitoring project (HBM4EU) was started with the aim to investigate exposure to several chemicals, including acrylamide. Here we set out to provide a combined analysis of previous and current European acrylamide biomonitoring study results by harmonizing and integrating different data sources, including HBM4EU aligned studies, with the aim to resolve overall and current time trends of acrylamide exposure in Europe. Data from 10 European countries were included in the analysis, comprising more than 5500 individual samples (3214 children and teenagers, 2293 adults). We utilized linear models as well as a non-linear fit and breakpoint analysis to investigate trends in temporal acrylamide exposure as well as descriptive statistics and statistical tests to validate findings. Our results indicate an overall increase in acrylamide exposure between the years 2001 and 2017. Studies with samples collected after 2018 focusing on adults do not indicate increasing exposure but show declining values. Regional differences appear to affect absolute values, but not the overall time-trend of exposure. As benchmark levels for acrylamide content in food have been adopted in Europe in 2018, our results may imply the effects of these measures, but only indicated for adults, as corresponding data are still missing for children. © 2022 by the authorsVeröffentlichung Position paper on management of personal data in environment and health research in Europe(2022) Govarts, Eva; Gilles, Liese; Bopp, Stephanie; Vogel, NinaManagement of datasets that include health information and other sensitive personal information of European study participants has to be compliant with the General Data Protection Regulation (GDPR, Regulation (EU) 2016/679). Within scientific research, the widely subscribed 'FAIR' data principles should apply, meaning that research data should be findable, accessible, interoperable and re-usable. Balancing the aim of open science driven FAIR data management with GDPR compliant personal data protection safeguards is now a common challenge for many research projects dealing with (sensitive) personal data. In December 2020 a workshop was held with representatives of several large EU research consortia and of the European Commission to reflect on how to apply the FAIR data principles for environment and health research (E&H). Several recent data intensive EU funded E&H research projects face this challenge and work intensively towards developing solutions to access, exchange, store, handle, share, process and use such sensitive personal data, with the aim to support European and transnational collaborations. As a result, several recommendations, opportunities and current limitations were formulated. New technical developments such as federated data management and analysis systems, machine learning together with advanced search software, harmonized ontologies and data quality standards should in principle facilitate the FAIRification of data. To address ethical, legal, political and financial obstacles to the wider re-use of data for research purposes, both specific expertise and underpinning infrastructure are needed. There is a need for the E&H research data to find their place in the European Open Science Cloud. Communities using health and population data, environmental data and other publicly available data have to interconnect and synergize. To maximize the use and re-use of environment and health data, a dedicated supporting European infrastructure effort, such as the EIRENE research infrastructure within the ESFRI roadmap 2021, is needed that would interact with existing infrastructures. © 2022 The AuthorsVeröffentlichung Glyphosate and AMPA in human urine of HBM4EU-aligned studies: Part A children(2022) Buekers, Jurgen; Remy, Sylvie; Bessems, Jos; Kolossa-Gehring, Marike; Vogel, NinaFew data are available on the exposure of children to glyphosate (Gly) in Europe. Within HBM4EU, new HBM exposure data were collected from aligned studies at five sampling sites distributed over Europe (studies: SLO CRP (SI); ORGANIKO (CY); GerES V-sub (DE); 3XG (BE); ESTEBAN (FR)). Median Gly concentrations in urine were below or around the detection limit (0.1 Ìg/L). The 95th percentiles ranged between 0.18 and 1.03 Ìg Gly/L. The ratio of AMPA (aminomethylphosphonic acid; main metabolite of Gly) to Gly at molar basis was on average 2.2 and the ratio decreased with higher Gly concentrations, suggesting that other sources of AMPA, independent of metabolism of Gly to AMPA in the monitored participants, may concurrently operate. Using reverse dosimetry and HBM exposure data from five European countries (east, west and south Europe) combined with the proposed ADI (acceptable daily intake) of EFSA for Gly of 0.1 mg/kg bw/day (based on histopathological findings in the salivary gland of rats) indicated no human health risks for Gly in the studied populations at the moment. However, the absence of a group ADI for Gly+AMPA and ongoing discussions on e.g., endocrine disrupting effects cast some uncertainty in relation to the current single substance ADI for Gly. The carcinogenic effects of Gly are still debated in the scientific community. These outcomes would influence the risk conclusions presented here. Finally, regression analyses did not find clear associations between urinary exposure biomarkers and analyzed potential exposure determinants. More information from questionnaires targeting exposure-related behavior just before the sampling is needed. © 2022 by the authorsVeröffentlichung Cumulative risk assessment of five phthalates in European children and adolescents(2022) Kolossa-Gehring, Marike; Lange, Rosa; Gerofke, Antje; Schmidt, Philipp; Vogel, NinaThe European Human Biomonitoring Initiative (HBM4EU) assessed human biomonitoring data on phthalates in children and adolescents, that were sampled between 2014 and 2021, in a harmonised way. These so-called "HBM4EU Aligned Studies" revealed that almost all children and adolescents were exposed to multiple phthalates concurrently. Some phthalates have been shown to act in a dose-additive manner, thus, a mixture risk assessment is warranted. In our study, we determine the risk from combined exposure to five anti-androgenic phthalates, namely DEHP, DiBP, DnBP, BBzP and DiNP by making use of the hazard index (HI) approach. Toxicologically-based human biomonitoring guidance values (HBM-GVs) derived within the framework of HBM4EU served as basis. Our results show that exposures of 17% of children and adolescents from twelve European countries resulted in hazard indices (HI)>1 with an HI of 1.77 at the 95th percentile (geometric mean, GM=0.44). Main drivers for the mixture risk are DnBP and DiBP. Generalized Linear Model (GLM) analysis including four major exposure determinants (age, sex, European region, sampling year) simultaneously reveal differences for the European regions and between sampling years. Children and adolescents living in the Eastern region of Europe have on average, higher HIs (GM=0.58) than in the Southern region (GM=0.36) and Western region (GM=0.42). Moreover, participants from which urine samples were taken in the earlier years (2014-2016) seem to have higher average HI levels than participants from studies with later sampling periods. Strikingly, the majority (63%) of participants with HIs>1 would have gone unnoticed in single substance risk assessments as individual phthalates levels were below corresponding HBM-GVs. Thus, our results underline the importance of mixture risk assessment approaches to adequately address risks from concurrent chemical exposure. © 2022 Published by Elsevier GmbH.
- «
- 1 (current)
- 2
- 3
- »