Person:
Ulrich, Mathias

Lade...
Profilbild
E-Mail-Adresse
Geburtsdatum
Forschungsvorhaben
Berufsbeschreibung
Nachname
Ulrich
Vorname
Mathias
Name

Suchergebnisse

Gerade angezeigt 1 - 2 von 2
  • Veröffentlichung
    Large herbivores on permafrost - a pilot study of grazing impacts on permafrost soil carbon storage in northeastern Siberia
    (2022) Windirsch, Torben; Große, Guido; Ulrich, Mathias
    The risk of carbon emissions from permafrost is linked to an increase in ground temperature and thus in particular to thermal insulation by vegetation, soil layers and snow cover. Ground insulation can be influenced by the presence of large herbivores browsing for food in both winter and summer. In this study, we examine the potential impact of large herbivore presence on the soil carbon storage in a thermokarst landscape in northeastern Siberia. Our aim in this pilot study is to conduct a first analysis on whether intensive large herbivore grazing may slow or even reverse permafrost thaw by affecting thermal insulation through modifying ground cover properties. As permafrost soil temperatures are important for organic matter decomposition, we hypothesize that herbivory disturbances lead to differences in ground-stored carbon. Therefore, we analyzed five sites with a total of three different herbivore grazing intensities on two landscape forms (drained thermokarst basin, Yedoma upland) in Pleistocene Park near Chersky. We measured maximum thaw depth, total organic carbon content, 8´13C isotopes, carbon-nitrogen ratios, and sediment grain-size composition as well as ice and water content for each site. We found the thaw depth to be shallower and carbon storage to be higher in intensively grazed areas compared to extensively and non-grazed sites in the same thermokarst basin. First data show that intensive grazing leads to a more stable thermal ground regime and thus to increased carbon storage in the thermokarst deposits and active layer. However, the high carbon content found within the upper 20 cm on intensively grazed sites could also indicate higher carbon input rather than reduced decomposition, which requires further studies including investigations of the hydrology and general ground conditions existing prior to grazing introduction. We explain our findings by intensive animal trampling in winter and vegetation changes, which overcompensate summer ground warming. We conclude that grazing intensity - along with soil substrate and hydrologic conditions - might have a measurable influence on the carbon storage in permafrost soils. Hence the grazing effect should be further investigated for its potential as an actively manageable instrument to reduce net carbon emission from permafrost. © 2022 the Authors
  • Veröffentlichung
    Impacts of reindeer on soil carbon storage in the seasonally frozen ground of Northern Finland: A pilot study
    (2023) Windirsch, Torben; Forbes, Bruce C.; Große, Guido; Ulrich, Mathias
    To test the effect of reindeer husbandry on soil carbon storage of seasonally frozen ground, we analysed soil and vegetation properties in peatlands and mixed pine and mountain birch forests. We analysed sites with no grazing and contrasting intensities of grazing, and associated trampling, in Northern Finland. With a pilot study approach, we optimised the study design to include several grazing class sites including grazing seasonality but omitting sample replication at one site. Soils were analysed for water content, bulk density, total organic carbon (TOC), total nitrogen, stable carbon isotopes and radiocarbon ages. We found that there was no significant difference between grazing intensities in terms of TOC, but that TOC mainly depended on the soils' TOC content present prior to intensive herbivory introduction. In contrast, understory vegetation was visibly transformed from dwarf shrub to graminoid-dominated vegetation with increasing grazing and trampling intensity. Also, we found a decrease in bulk density with increasing animal activity on soil sites, which most likely results from named vegetation changes and therefore different peat structures. Quelle: https://www.borenv.net/BER/archive/pdfs/ber28/ber28-207-226-abstract.htm