Person:
Kuckelkorn, Jochen

Lade...
Profilbild
E-Mail-Adresse
Geburtsdatum
Forschungsvorhaben
Berufsbeschreibung
Diplom-Biologe
Nachname
Kuckelkorn
Vorname
Jochen
Name

Suchergebnisse

Gerade angezeigt 1 - 4 von 4
  • Veröffentlichung
    Persistente mobile organische Chemikalien in der aquatischen Umwelt: Quellen, Vorkommen und technische Möglichkeiten zu ihrer Entfernung in der Trinkwasseraufbereitung (PROTECT)
    (2023) Muschket, Matthias; Kuckelkorn, Jochen; Zahn, Daniel; Neuwald, Isabelle; Schumann, Pia; Rabe, Luisa; Ruhl, Aki Sebastian; Helmholtz-Zentrum für Umweltforschung
  • Veröffentlichung
    Persistente und mobile Stoffe im Wasserkreislauf
    (2023) Muschket, Matthias; Kuckelkorn, Jochen; Zahn, Daniel; Neuwald, Isabelle; Schumann, Pia; Rabe, Luisa; Ruhl, Aki Sebastian
  • Veröffentlichung
    Assessing the protection gap for mobile and persistent chemicals during advanced water treatment - a study in a drinking water production and wastewater treatment plant
    (2022) Gollong, Grete; Neuwald, Isabelle; Junek, Ralf; Kuckelkorn, Jochen
    Persistent and mobile (PM) chemicals spread quickly in the water cycle and can reach drinking water. If these chemicals are also toxic (PMT) they may pose a threat to the aquatic environment and drinking water alike, and thus measures to prevent their spread are necessary. In this study, nontarget screening and cell-based toxicity tests after a polarity-based fractionation into polar and non-polar chemicals are utilized to assess and compare the effectiveness of ozonation and filtration through activated carbon in a wastewater treatment and drinking water production plant. Especially during wastewater treatment, differences in removal efficiency were evident. While median areas of non-polar features were reduced by a factor of 270, median areas for polar chemicals were only reduced by a factor of 4. Polar features showed significantly higher areas than their non-polar counterparts in wastewater treatment plant effluent and finished drinking water, implying a protection gap for these chemicals. Toxicity tests revealed higher initial toxicities (especially oxidative stress and estrogenic activity) for the non-polar fraction, but also showed a more pronounced decrease during treatment. Generally, the toxicity of the effluent was low for both fractions. Combined, these results imply a less effective removal but also a lower toxicity of polar chemicals. The behaviour of features during advanced waste and drinking water treatment was used to classify them as either PM chemicals or mobile transformation products (M-TPs). A suspect screening of the 476 highest intensity PM chemicals and M-TPs in 57 environmental and tap water samples showed high frequencies of detection (median >80%), which indicates the wide distribution of these chemicals in the aquatic environment and thus supports the chosen classification approach and the more generally applicability of obtained insights. © 2022 Elsevier
  • Veröffentlichung
    Filling the knowledge gap: A suspect screening study for 1310 potentially persistent and mobile chemicals with SFC- and HILIC-HRMS in two German river systems
    (2021) Neuwald, Isabelle; Kuckelkorn, Jochen; Muschket, Matthias; Zahn, Daniel; Strobel, Claudia
    Persistent and mobile chemicals (PM chemicals) were searched for in surface waters by hydrophilic interaction liquid chromatography (HILIC) and supercritical fluid chromatography (SFC), both coupled to high resolution mass spectrometry (HRMS). A suspect screening was performed using a newly compiled list of 1310 potential PM chemicals to the data of 11 surface water samples from two river systems. In total, 64 compounds were identified by this approach. The overlap between HILIC- and SFC-HRMS was limited (31 compounds), confirming the complementarity of the two methods used. The identified PM candidates are characterized by a high polarity (median logD -0.4 at pH 7.5), a low molecular weight (median 187 g/mol), are mostly ionic (54 compounds) and contain a large number of heteroatoms (one per four carbons on average). Among the most frequently detected novel or yet scarcely investigated water contaminants were cyanoguanidine (11/11 samples), adamantan-1-amine (10/11), trifluoromethanesulfonate (9/11), 2-acrylamido-2-methylpropanesulfonate (10/11), and the inorganic anions hexafluorophosphate (11/11) and tetrafluoroborate (10/11). 31% of the identified suspects are mainly used in ionic liquids, a chemically diverse group of industrial chemicals with numerous applications that is so far rarely studied for their occurrence in the environment. Prioritization of the findings of PM candidates is hampered by the apparent lack of toxicity data. Hence, precautionary principles and minimization approaches should be applied for the risk assessment and risk management of these substances. The large share of novel water contaminants among these findings of the suspect screening indicates that the universe of PM chemicals present in the environment has so far only scarcely been explored. Dedicated analytical methods and screening lists appear essential to close the analytical gap for PM compounds. © 2021 Published by Elsevier Ltd.