Person: Feibicke, Michael
Lade...
E-Mail-Adresse
Geburtsdatum
Forschungsvorhaben
Organisationseinheiten
Berufsbeschreibung
Nachname
Feibicke
Vorname
Michael
Name
1 Ergebnisse
Suchergebnisse
Gerade angezeigt 1 - 1 von 1
Veröffentlichung Effects of a realistic pesticide spraying sequence for apple crop on stream communities in mesocosms: negligible or notable?(2023) Duquesne, Sabine; Feibicke, Michael; Frische, Tobias; Gergs, René; Meinecke, Stefan; Sahm, René; Mohr, SilviaBackground Several large-scale studies revealed impacts and risks for aquatic communities of small rural lakes and streams due to pesticides in agricultural landscapes. It appears that pesticide risk assessment based on single products does not offer sufficient protection for non-target organisms, which are exposed repeatedly to pesticide mixtures in the environment. Therefore, a comprehensive stream mesocosm study was conducted in order to investigate the potential effects of a realistic spraying sequence for conventional orchard farmed apples on a stream community using pesticides at their regulatory acceptable concentrations (RACs). Eight 74-m-long stream mesocosms were established with water, sand, sediment, macrophytes, plankton and benthic macroinvertebrates. In total, nine fungicidal, four herbicidal and four insecticidal pesticides were applied in four of the eight stream mesocosms on 19 spraying event days in the period from April to July while the remaining four stream mesocosms served as controls. The community composition, the abundance of benthos, periphyton and macrophytes, the emergence of insects, physico-chemical water parameters, and drift measurements of aquatic invertebrates were measured. Results The pesticide spraying sequence induced significant effects on invertebrates, periphyton, and macrophytes as well as on the water ion composition especially in the second half of the experiment. It was not possible to relate the observed effects on the community to specific pesticides applied at certain time points and their associated toxic pressure using the toxic unit approach. The most striking result was the statistically significant increase in variation of population response parameters of some taxa in the treated mesocosms compared to the controls. This inter-individual variation can be seen as a general disturbance measure for the ecosystem. Conclusions The pesticide spraying sequence simulated by using RAC values had notable effects on the aquatic stream community in the conducted mesocosm study. The results indicate that the current risk assessment for pesticides may not ensure a sufficient level of protection to the field communities facing multiple pesticide entries due to spraying sequences and other combined stress. Hence, there is still room for improvement regarding the prospective risk assessment of pesticides to further reduce negative effects on the environment. © The Author(s) 2023