Person: Ruhl, Aki Sebastian
Lade...
E-Mail-Adresse
Geburtsdatum
Forschungsvorhaben
Organisationseinheiten
Berufsbeschreibung
Nachname
Ruhl
Vorname
Aki Sebastian
Name
3 Ergebnisse
Suchergebnisse
Gerade angezeigt 1 - 3 von 3
Veröffentlichung Transformation of potentially persistent and mobile organic micropollutants in column experiments(2023) Pabst, Silke; Schumann, Pia; Ruhl, Aki Sebastian; Zeeshan, MuhammadVeröffentlichung Fate of leaf litter deposits and impacts on oxygen availability in bank filtration column studies(2018) Bayarsaikhan, Uranchimeg; Filter, Josefine; Gernert, Ulrich; Ruhl, Aki SebastianDegradation of particulate organic carbon (POC) such as leaf litter might deplete dissolved oxygen within the upper layers of bank filtration, an efficient and robust barrier for pathogens and for various organic micro-pollutants (OMP) in water supply systems worldwide. The degradation of OMP during bank filtration depends on the redox conditions. The present study aimed at identifying the impacts and fates of different local leaves on the oxygen consumption and the possible biological degradation of indicator OMP. Oxygen concentrations initially decreased within the columns from around 8 mg/L in the influent to low concentrations indicating extensive consumption within a short travel distance. Still a substantial oxygen consumption was observed after 250 days. OMP concentrations were not significantly affected by the microbial processes. A layer of calcium carbonate crystallites was observed on the POC layer. Some leaf fragments appeared to be persistant towards degradation and the carbon content relative to nitrogen and sulfur contents decreased within 250 days. The results demonstrate that trees at bank filtration sites might have a strong long-term impact on the subsurface redox conditions. © 2018 Elsevier Inc. All rights reserved.Veröffentlichung The fate of nitrification and urease inhibitors in simulated bank filtration(2023) Förster, Christina; Scheurer, Marco; Klitzke, Sondra; Ruhl, Aki Sebastian; Zeeshan, MuhammadThe application of nitrification and urease inhibitors (NUI) in conjunction with nitrogen (N) fertilizers improves the efficiency of N fertilizers. However, NUI are frequently found in surface waters through leaching or surface runoff. Bank filtration (BF) is considered as a low-cost water treatment system providing high quality water by efficiently removing large amounts of organic micropollutants from surface water. The fate of NUI in managed aquifer recharge systems such as BF is poorly known. The aim of this work was to investigate sorption and degradation of NUI in simulated BF under near-natural conditions. Besides, the effect of NUI on the microbial biomass of slowly growing microorganisms and the role of microbial biomass on NUI removal was investigated. Duplicate sand columns (length 1.7 m) fed with surface water were spiked with a pulse consisting of four nitrification (1,2,4-triazole, dicyanodiamide, 3,4-dimethylpyrazole and 3-methylpyrazole) and two urease inhibitors (n-butyl-thiophosphoric acid triamide and n-(2-nitrophenyl) phosphoric triamide). The average spiking concentration of each NUI was 5 ÎÌg/L. Experimental and modeled breakthrough curves of NUI indicated no retardation for any of the inhibitors. Therefore, biodegradation was identified as the main elimination pathway for all substances and was highest in zones of high microbial biomass. Removal of 1,2,4-triazole was 50% and n-butyl-thiophosphoric acid triamide proved to be highly degradable and was completely removed after a hydraulic retention time (HRT) of 24 h. 50% of the mass recovery for nitrification inhibitors except for 3,4-dimethylpyrazole was observed at the effluent (4 days HRT). In addition, a mild effect of NUI on microbial biomass was noted. This study highlights that the degradation of NUI in BF depends on HRT and microbial biomass. © 2023 Elsevier