Person:
Ruhl, Aki Sebastian

Lade...
Profilbild
E-Mail-Adresse
Geburtsdatum
Forschungsvorhaben
Berufsbeschreibung
Nachname
Ruhl
Vorname
Aki Sebastian
Name

Suchergebnisse

Gerade angezeigt 1 - 4 von 4
  • Veröffentlichung
    Fast empirical lab method for performance projections of large-scale powdered activated carbon re-circulation plants
    (2019) Zietzschmann, Frederik; Dittmar, Stefan; Ruhl, Aki Sebastian
    Powdered activated carbon (PAC) for organic micro-pollutant (OMP) removal can be applied effectively on wastewater treatment plant (WWTP) effluents by using recirculation schemes, accumulating the PAC in the system. This technique is complex because several factors are unknown: (i) the PAC concentration in the system, (ii) specific and average contact times of PAC particles, and (iii) PAC particle loadings with target compounds/competing water constituents. Thus, performance projections (e.g. in the lab) are very challenging. We sampled large-scale PAC plants with PAC sludge recirculation on eight different WWTPs. The PAC plant-induced OMP removals were notably different, even when considering PAC concentrations in proportion to background organic sum parameters. The variability is likely caused by differing PAC products, varying water composition, differently effective plant/recirculation operation, and variable biodegradation. Plant PAC samples and parts of the PAC plant influent samples were used in laboratory tests, applying multiples (0.5, 1, 2, 4) of the respective large-scale "fresh" PAC doses, and several fixed contact times (0.5, 1, 2, 4, 48 h). The aim was to empirically identify suitable combinations of lab PAC dose (as multiples of the plant PAC dose) and contact time, which represent the PAC plant performances in removing OMPs (for specific OMPs at single locations, and for averages of different OMPs at all locations). E.g., for five well adsorbing, little biodegradable OMPs, plant performances can be projected by using a lab PAC dose of twice the respective full-scale PAC dose and 4 h lab contact time (standard deviation of 13 %-points). © 2018 Elsevier Ltd. All rights reserved.
  • Veröffentlichung
    Simulating effluent organic matter competition in micropollutant adsorption onto activated carbon using a surrogate competitor
    (2018) Dittmar, Stefan; Zietzschmann, Frederik; Mai, Maike; Ruhl, Aki Sebastian
    Adsorption onto activated carbon is a promising option for removing organic micropollutants (OMPs) from wastewater treatment plant (WWTP) effluents. The heterogeneity of activated carbons and adsorption competition between OMPs and adsorbable compounds of the effluent organic matter (EfOM) complicate the prediction of OMP removals. Thus, reliable and simple test systems are desirable. For this study, batch experiments with powdered activated carbon (PAC) were carried out to examine methyl orange (MO) as a selected surrogate competitor to simulate EfOM adsorption competition. MO solutions were spiked with carbamazepine (CBZ) as an indicator substance for well-adsorbing OMPs. On the basis of CBZ adsorption isotherms in WWTP effluents, MO concentrations for batch test solutions with identical adsorption competition toward CBZ were calculated. The calculations were performed according to an empirical model of CBZ adsorption in the presence of MO, since predictions employing the ideal adsorbed solution theory (IAST) proved to be inaccurate. Comparative batch tests with five different PACs were conducted with WWTP effluent and respective MO batch test solutions. Except for one PAC, the achieved CBZ removals were very similar in WWTP effluent and the test solution. Additionally, a universal correlation between MO and CBZ removals was found for four PACs. Quelle: https://pubs.acs.org/
  • Veröffentlichung
    Quantification and isotherm modelling of competitive phosphate and silicate adsorption onto micro-sized granular ferric hydroxide
    (2019) Hilbrandt, Inga; Lehmann, Vito; Zietzschmann, Frederik; Ruhl, Aki Sebastian
    Adsorption onto ferric hydroxide is a known method to reach very low residual phosphate concentrations. Silicate is omnipresent in surface and industrial waters and reduces the adsorption capacity of ferric hydroxides. The present article focusses on the influences of silicate concentration and contact time on the adsorption of phosphate to a micro-sized iron hydroxide adsorbent (nGFH) and fits adsorption data to multi-component adsorption isotherms. In Berlin drinking water (DOC of approx. 4 mg L-1) at pH 7.0, loadings of 24 mg g-1 P (with 3 mg L-1 initial PO43--P) and 17 mg L-1 Si (with 9 mg L-1 initial Si) were reached. In deionized water, phosphate shows a high percentage of reversible bonds to nGFH while silicate adsorption is not reversible probably due to polymerization. Depending on the initial silicate concentration, phosphate loadings are reduced by 27, 33 and 47% (for equilibrium concentrations of 1.5 mg L-1) for 9, 14 and 22 mg L-1 Si respectively. Out of eight tested multi-component adsorption models, the Extended Freundlich Model Isotherm (EFMI) describes the simultaneous adsorption of phosphate and silicate best. Thus, providing the means to predict and control phosphate removal. Longer contact times of the adsorbent with silicate prior to addition of phosphate reduce phosphate adsorption significantly. Compared to 7 days of contact with silicate (c0 = 10 mg L-1) prior to phosphate (c0 = 3 mg L-1) addition, 28 and 56 days reduce the nGFH capacity for phosphate by 21 and 43%, respectively. Quelle: https://pubs.rsc.org
  • Veröffentlichung
    Competition in chromate adsorption onto micro-sized granular ferric hydroxide
    (2019) Hilbrandt, Inga; Ruhl, Aki Sebastian; Zietzschmann, Frederik
    Hexavalent chromium is highly toxic and elaborate technology is necessary for ensured removal during drinking water production. The present study aimed at estimating the potential of a micro-sized iron hydroxide (nGFH] adsorbent for chromate removal in competition to ions presents in drinking water. Freundlich and Langmuir models were applied to describe the adsorption behaviour. The results show a high dependency on the pH value with increasing adsorption for decreasing pH values. The adsorption capacity in deionized water (DI) at pH 7 was 5.8mg/g Cr(VI) while it decreased to 1.9mg/g Cr(VI) in Berlin drinking water (DW) at initial concentrations of 1.2mg/L. Desorption experiments showed reversible adsorption indicating ion exchange and outer sphere complexes as main removal mechanisms. Competing ions present in DW were tested for interfering effects on chromate adsorption. Bicarbonate was identified as main inhibitor of chromate adsorption. Sulfate, silicate and phosphate also decreased chromate loadings, while calcium enhanced chromate adsorption. Adsorption kinetics were highly dependent on particle size and adsorbent dose. Adsorption equilibrium was reached after 60ââą ¯min for particles smaller than 63nm, while 240 min were required for particles from 125nm to 300nm. Adsorption kinetics in single solute systems could be modelled using the homogeneous surface diffusion model (HSDM) with a surface diffusion coefficient of 4x10-14m2/s. Competitive adsorption could be modelled using simple equations dependent on time, adsorption capacity and concentrations only. © 2018 Elsevier Ltd. All rights reserved.