Person:
Chorus, Ingrid

Lade...
Profilbild
E-Mail-Adresse
Geburtsdatum
Forschungsvorhaben
Berufsbeschreibung
Nachname
Chorus
Vorname
Ingrid
Name

Suchergebnisse

Gerade angezeigt 1 - 3 von 3
  • Veröffentlichung
    Combating cyanobacterial proliferation by avoiding or treating inflows with high P load ̶ experiences from eight case studies
    (2015) Abella, Sally E. B.; Chorus, Ingrid; Litt, Arni; Fastner, Jutta; Morabito, Giuseppe; Voeroes, Lajos; Pálffy, Károly; Straile, Dietmar; Kümmerlin, Reiner; Matthews, David; Phillips, M. Geoff
    Increased external nutrient loads of anthropogenic origin, especially those of phosphorus (P), were one of the major causes of eutrophication during the first half of the twentieth century in Europe. They led to deterioration of lake ecosystems, particularly including noxious blooms of (potentially toxic) cyanobacteria. From the 1970-1980s, strategies to decrease the phosphorus loads from sewage were increasingly implemented, among them are the ban of phosphates in detergents, the expansion of sewer systems and improvement in wastewater treatment to remove nutrients. Case studies of eight lakes, whose response to point source reduction of phosphorus was observed over decades, show that a pronounced reduction of the phosphorus load from point sources can be achieved either by the diversion of inflows carrying high loads, by upgraded sewage treatment, or by phosphorus precipitation in the major tributary directly before its inflow into the water body. Outcomes demonstrate that in order to effectively control cyanobacterial blooms, the measures taken need to reduce in-lake concentrations of total phosphorus below 20-50 Ţg L-1, with this threshold varying somewhat between lakes depending in particular on hydromorphological and biological conditions. Whether and when load reduction succeeds in controlling cyanobacteria depends primarily on the load remaining after remediation and on the water residence time.
    Quelle: http://link.springer.com/
  • Veröffentlichung
    Fatal neurotoxicosis in dogs associated with tychoplanktic, anatoxin-a producing tychonema sp. in mesotrophic Lake Tegel, Berlin
    (2018) Beulker, Camilla; Chorus, Ingrid; Fastner, Jutta
    In May 2017, at least 12 dogs showed signs of acute neurotoxicosis after swimming in or drinking from Lake Tegel, a mesotrophic lake in Berlin, Germany, and several of the affected dogs died shortly afterwards despite intensive veterinary treatment. Cyanobacterial blooms were not visible at the water surface or the shorelines. However, detached and floating water moss (Fontinalis antipyretica) with high amounts of Tychonema sp., a potential anatoxin-a (ATX) producing cyanobacterium, was found near the beaches where the dogs had been swimming and playing. Necropsies of two of the dogs revealed no specific lesions beside the anamnestic neurotoxicosis. ATX was detected in concentrations up to 8700 Ìg Lâ Ì1 in the stomach contents, while other (neuro)toxic substances were not found. In the aqueous fraction of Fontinalis/Tychonema clumps sampled after the casualties, ATX was found in concentrations up to 1870 Ìg Lâ Ì1. This is the first report of a dense population of Tychonema sp. in stands of Fontinalis resulting in high ATX contents. This case emphasizes the need for further investigation of potentially toxic, non-bloom forming cyanobacteria in less eutrophic water bodies and underlines the novel challenge of developing appropriate surveillance schemes for respective bathing sites. Quelle: https://www.mdpi.com
  • Veröffentlichung
    Nitrogen Limitation Promotes Accumulation and Suppresses Release of Cylindrospermopsins in Cells of Aphanizomenon Sp.
    (2014) Preußel, Karina; Chorus, Ingrid; Fastner, Jutta
    As the biosynthesis of cylindrospermopsin (CYN) is assumed to depend on nitrogen availability, this study investigated the impact of nitrogen availability on intra- and extracellular CYN and deoxy-CYN (D-CYN) contents in three Aphanizomenon strains from temperate waters. Nitrogen deficient (-N) cultures showed a prolonged growth phase and intracellular toxin accumulation by a factor of 2-6. In contrast, cultures with additional nitrate supply (+N) did not accumulate CYN within the cells. Instead, the maximum conceivable CYN release estimated for dead cells (identified by SYTOX® Green staining) was much lower than the concentrations of dissolved CYN actually observed, suggesting these cultures actively release CYN from intact cells. Furthermore, we found remarkably altered proportions of CYN to D-CYN: as batch cultures grew, the proportion of D-CYN increased by up to 40% in +N medium, whereas D-CYN remained constant or decreased slightly in -N medium. Since +N cultures showed similar toxin patterns as -P cultures with increased extracellular CYNs and higher proportion of D-CYN we conclude that nitrogen limitation may affect the way the cells economize resources, especially the yield from phosphorus pools, and that this has an impact on CYN production and release. For water management, these result imply that nutrient availability not only determines the abundance of potentially CYN-producing cyanobacteria, but also the amount of extracellular CYNs (challenging drinking-water treatment) as well as the ratio of D-CYN to CYN (affecting toxicity).
    Quelle: http://www.mdpi.com/