Person:
Chorus, Ingrid

Lade...
Profilbild
E-Mail-Adresse
Geburtsdatum
Forschungsvorhaben
Berufsbeschreibung
Nachname
Chorus
Vorname
Ingrid
Name

Suchergebnisse

Gerade angezeigt 1 - 5 von 5
  • Veröffentlichung
    Combating cyanobacterial proliferation by avoiding or treating inflows with high P load ̶ experiences from eight case studies
    (2015) Abella, Sally E. B.; Chorus, Ingrid; Litt, Arni; Fastner, Jutta; Morabito, Giuseppe; Voeroes, Lajos; Pálffy, Károly; Straile, Dietmar; Kümmerlin, Reiner; Matthews, David; Phillips, M. Geoff
    Increased external nutrient loads of anthropogenic origin, especially those of phosphorus (P), were one of the major causes of eutrophication during the first half of the twentieth century in Europe. They led to deterioration of lake ecosystems, particularly including noxious blooms of (potentially toxic) cyanobacteria. From the 1970-1980s, strategies to decrease the phosphorus loads from sewage were increasingly implemented, among them are the ban of phosphates in detergents, the expansion of sewer systems and improvement in wastewater treatment to remove nutrients. Case studies of eight lakes, whose response to point source reduction of phosphorus was observed over decades, show that a pronounced reduction of the phosphorus load from point sources can be achieved either by the diversion of inflows carrying high loads, by upgraded sewage treatment, or by phosphorus precipitation in the major tributary directly before its inflow into the water body. Outcomes demonstrate that in order to effectively control cyanobacterial blooms, the measures taken need to reduce in-lake concentrations of total phosphorus below 20-50 Ţg L-1, with this threshold varying somewhat between lakes depending in particular on hydromorphological and biological conditions. Whether and when load reduction succeeds in controlling cyanobacteria depends primarily on the load remaining after remediation and on the water residence time.
    Quelle: http://link.springer.com/
  • Veröffentlichung
    Decades needed for ecosystem components to respond to a sharp and drastic phosphorus load reduction
    (2020) Beulker, Camilla; Köhler, Antje; Chorus, Ingrid; Fastner, Jutta
    Lake Tegel is an extreme case of restoration: inflow treatment reduced its main external phosphorus (TP) load 40-fold, sharply focused in time, and low-P water flushed the lake volume ~ 4 times per year. We analysed 35 years of data for the time TP concentrations took to decline from ~ 700 to 20-30 (my)g/l, biota to respond and cyanobacteria to become negligible. The internal load proved of minor relevance. After 10 years, TP reached 35-40 (my)g/l, phytoplankton biomass abruptly declined by 50% and cyanobacteria no longer dominated; yet 10 years later at TP < 20-30 (my)g/l they were below quantifiable levels. 20-25 years after load reduction, the lake was stably mesotrophic, macrophytes had returned down to 6-8 m, and vivianite now forms, binding P insolubly in the sediment. Bottom-up control of phytoplankton through TP proved decisive. Five intermittent years with a higher external P load caused some 're-eutrophication', delaying recovery by 5 years. While some restoration responses required undercutting thresholds, particularly that of phytoplankton biomass to TP, resilience and hysteresis proved irrelevant. Future research needs to focus on the littoral zone, and for predicting time spans for recovery more generally, meta-analyses should address P load reduction in combination with flushing rates. The Author(s) 2020
  • Veröffentlichung
    Fatal neurotoxicosis in dogs associated with tychoplanktic, anatoxin-a producing tychonema sp. in mesotrophic Lake Tegel, Berlin
    (2018) Beulker, Camilla; Chorus, Ingrid; Fastner, Jutta
    In May 2017, at least 12 dogs showed signs of acute neurotoxicosis after swimming in or drinking from Lake Tegel, a mesotrophic lake in Berlin, Germany, and several of the affected dogs died shortly afterwards despite intensive veterinary treatment. Cyanobacterial blooms were not visible at the water surface or the shorelines. However, detached and floating water moss (Fontinalis antipyretica) with high amounts of Tychonema sp., a potential anatoxin-a (ATX) producing cyanobacterium, was found near the beaches where the dogs had been swimming and playing. Necropsies of two of the dogs revealed no specific lesions beside the anamnestic neurotoxicosis. ATX was detected in concentrations up to 8700 Ìg Lâ Ì1 in the stomach contents, while other (neuro)toxic substances were not found. In the aqueous fraction of Fontinalis/Tychonema clumps sampled after the casualties, ATX was found in concentrations up to 1870 Ìg Lâ Ì1. This is the first report of a dense population of Tychonema sp. in stands of Fontinalis resulting in high ATX contents. This case emphasizes the need for further investigation of potentially toxic, non-bloom forming cyanobacteria in less eutrophic water bodies and underlines the novel challenge of developing appropriate surveillance schemes for respective bathing sites. Quelle: https://www.mdpi.com
  • Veröffentlichung
    Nitrogen Limitation Promotes Accumulation and Suppresses Release of Cylindrospermopsins in Cells of Aphanizomenon Sp.
    (2014) Preußel, Karina; Chorus, Ingrid; Fastner, Jutta
    As the biosynthesis of cylindrospermopsin (CYN) is assumed to depend on nitrogen availability, this study investigated the impact of nitrogen availability on intra- and extracellular CYN and deoxy-CYN (D-CYN) contents in three Aphanizomenon strains from temperate waters. Nitrogen deficient (-N) cultures showed a prolonged growth phase and intracellular toxin accumulation by a factor of 2-6. In contrast, cultures with additional nitrate supply (+N) did not accumulate CYN within the cells. Instead, the maximum conceivable CYN release estimated for dead cells (identified by SYTOX® Green staining) was much lower than the concentrations of dissolved CYN actually observed, suggesting these cultures actively release CYN from intact cells. Furthermore, we found remarkably altered proportions of CYN to D-CYN: as batch cultures grew, the proportion of D-CYN increased by up to 40% in +N medium, whereas D-CYN remained constant or decreased slightly in -N medium. Since +N cultures showed similar toxin patterns as -P cultures with increased extracellular CYNs and higher proportion of D-CYN we conclude that nitrogen limitation may affect the way the cells economize resources, especially the yield from phosphorus pools, and that this has an impact on CYN production and release. For water management, these result imply that nutrient availability not only determines the abundance of potentially CYN-producing cyanobacteria, but also the amount of extracellular CYNs (challenging drinking-water treatment) as well as the ratio of D-CYN to CYN (affecting toxicity).
    Quelle: http://www.mdpi.com/
  • Veröffentlichung
    Cyanobacteria and cyanotoxins in a changing environment: concepts, controversies, challenges
    (2021) Chorus, Ingrid; Fastner, Jutta; Welker, Martin
    Concern is widely being published that the occurrence of toxic cyanobacteria is increasing in consequence of climate change and eutrophication, substantially threatening human health. Here, we review evidence and pertinent publications to explore in which types of waterbodies climate change is likely to exacerbate cyanobacterial blooms; whether controlling blooms and toxin concentrations requires a balanced approach of reducing not only the concentrations of phosphorus (P) but also those of nitrogen (N); how trophic and climatic changes affect health risks caused by toxic cyanobacteria. We propose the following for further discussion: (i) Climate change is likely to promote blooms in some waterbodies - not in those with low concentrations of P or N stringently limiting biomass, and more so in shallow than in stratified waterbodies. Particularly in the latter, it can work both ways - rendering conditions for cyanobacterial proliferation more favourable or less favourable. (ii) While N emissions to the environment need to be reduced for a number of reasons, controlling blooms can definitely be successful by reducing only P, provided concentrations of P can be brought down to levels sufficiently low to stringently limit biomass. Not the N:P ratio, but the absolute concentration of the limiting nutrient determines the maximum possible biomass of phytoplankton and thus of cyanobacteria. The absolute concentrations of N or P show which of the two nutrients is currently limiting biomass. N can be the nutrient of choice to reduce if achieving sufficiently low concentrations has chances of success. (iii) Where trophic and climate change cause longer, stronger and more frequent blooms, they increase risks of exposure, and health risks depend on the amount by which concentrations exceed those of current WHO cyanotoxin guideline values for the respective exposure situation. Where trophic change reduces phytoplankton biomass in the epilimnion, thus increasing transparency, cyanobacterial species composition may shift to those that reside on benthic surfaces or in the metalimnion, changing risks of exposure. We conclude that studying how environmental changes affect the genotype composition of cyanobacterial populations is a relatively new and exciting research field, holding promises for understanding the biological function of the wide range of metabolites found in cyanobacteria, of which only a small fraction is toxic to humans. Overall, management needs case-by-case assessments focusing on the impacts of environmental change on the respective waterbody, rather than generalisations. © 2021 by the authors