Person:
Obermaier, Nathan

Lade...
Profilbild
E-Mail-Adresse
Geburtsdatum
Forschungsvorhaben
Berufsbeschreibung
Nachname
Obermaier
Vorname
Nathan
Name

Suchergebnisse

Gerade angezeigt 1 - 4 von 4
  • Veröffentlichung
    Konzeptvorschlag für die Auswahl zu untersuchender Mikroverunreinigungen in kommunalen Abwässern mittels physiko-chemischer Untersuchungsverfahren
    (2022) Braun, Ulrike; Bannick, Claus Gerhard; Lukas, Marcus; Bachem, Gunnar; Obermaier, Nathan; Ricking, Mathias
  • Veröffentlichung
    Microplastics in the Danube River Basin: a first comprehensive screening with harmonized analytical approach
    (2022) Braun, Ulrike; Bannick, Claus Gerhard; Bednarz, Marius; Kerndorf, Alexander; Lukas, Marcus; Obermaier, Nathan; Ricking, Mathias
    In this study, carried out within the Joint Danube Survey 4, a comprehensive microplastic screening in the water column within a large European river basin from its source to estuary, including major tributaries, was realized. The objective was to develop principles of a systematic and practicable microplastic monitoring strategy using sedimentation boxes for collection of suspended particulate matter followed by its subsequent analysis using thermal extraction desorption-gas chromatography/mass spectrometry. In total, 18 sampling sites in the Danube River Basin were investigated. The obtained suspended particulate matter samples were subdivided into the fractions of >100 mikrom and <100 mikrom and subsequently analyzed for microplastic mass contents. The results showed that microplastics were detected in all samples, with polyethylene being the predominant polymer with maximum contents of 22.24 mikrog/mg, 3.23 mikrog/mg for polystyrene, 1.03 mikrog/mg for styrene-butadiene-rubber, and 0.45 mikrog/mg for polypropylene. Further, polymers such as different sorts of polyester, polyacrylates, polylactide, and natural rubber were not detected or below the detection limit. Additional investigations on possible interference of polyethylene signals by algae-derived fatty acids were assessed. In the context of targeted monitoring, repeated measurements provide more certainty in the interpretation of the results for the individual sites. Nevertheless, it can be stated that the chosen approach using an integrative sampling and determination of total plastic content proved to be successful. © 2022 The Authors
  • Veröffentlichung
    A simple model approach for the desorption of DDT and related compounds from contaminated sediment to plastic polymers
    (2021) Bannick, Claus Gerhard; Kerndorff, Alexander; Braun, Ulrike; Obermaier, Nathan; Ricking, Mathias
  • Veröffentlichung
    Development of a routine screening method for the microplastic mass content in a wastewater treatment plant effluent
    (2022) Goedecke, Caroline; Eisentraut, Paul; Bannick, Claus Gerhard; Altmann, Korinna; Barthel, Anne-Kathrin; Obermaier, Nathan; Braun, Ulrike; Ricking, Mathias
    An investigation of microplastic (MP) occurrence in a municipal wastewater treatment plant (WWTP) effluent with tertiary treatment was carried out. Representative sample volumes of 1 m3 were taken by applying a fractionated filtration method (500, 100, and 50 (micro)m mesh sizes). The detection of MP mass fractions by thermal extraction desorption-gas chromatography/mass spectrometry (TED-GC/MS) was achieved without the previously required additional sample pretreatment for the first time. Different types of quantification methods for the evaluation of TED-GC/MS data were tested, and their accuracy and feasibility have been proven for real samples. Polyethylene, polystyrene, and polypropylene were identified in effluent samples. The polymer mass content varied significantly between 5 and 50 mg m-3. A correlation between the MP load and the quantity of suspended matter in the WWTP effluents, particle size distribution, particle type, and operation day (i.e., weekday, season, and capacity) was not found. It can be concluded that a meaningful assessment of WWTPs requires a comprehensive sampling campaign with varying operation conditions. © 2022 The Authors