Person: Apel, Petra
Lade...
E-Mail-Adresse
Geburtsdatum
Forschungsvorhaben
Organisationseinheiten
Berufsbeschreibung
Nachname
Apel
Vorname
Petra
Name
5 Ergebnisse
Suchergebnisse
Gerade angezeigt 1 - 5 von 5
Veröffentlichung Phthalate metabolites in 24-h urine samples of the German Environmental Specimen Bank (ESB) from 1988 to 2015 and a comparison with US NHANES data from 1999 to 2012(2017) Koch, Holger M.; Apel, Petra; Schütze, Andre; Conrad, André; Pälmke, Claudia; Kolossa-Gehring, Marike; Brüning, Thomas; Rüther, MariaThe German Environmental Specimen Bank (ESB) continuously collects 24-h urine samples since theearly 1980s in Germany. In this study we analyzed 300 urine samples from the years 2007 to 2015 for 21phthalate metabolites (representing exposure to 11 parent phthalates) and combined the data with twoprevious retrospective measurement campaigns (1988 to 2003 and 2002 to 2008). The combined datasetcomprised 1162 24-h urine samples spanning the years 1988 to 2015. With this detailed set of humanbiomonitoring data we describe the time course of phthalate exposure in Germany over a time frame of27 years. For the metabolites of the endocrine disrupting phthalates di(2-ethylhexyl) phthalate (DEHP),di-n-butyl phthalate (DnBP) and butylbenzyl phthalate (BBzP) we observed a roughly ten-fold decline inmedian metabolite levels from their peak levels in the late 1980s/early 1990s compared to most recentlevels from 2015. Probably, bans (first enacted in 1999) and classifications/labelings (enacted in 2001 and2004) in the European Union lead to this drop. A decline in di-isobutyl phthalate (DiBP) metabolite levelsset in only quite recently, possibly due to its later classification as a reproductive toxicant in the EU in 2009.In a considerable number of samples collected before 2002 health based guidance values (BE, HBM I) havebeen exceeded for DnBP (27.2%) and DEHP (2.3%) but also in recent samples some individual exceedancescan still be observed (DEHP 1.0%). A decrease in concentration for all low molecular weight phthalates,labelled or not, was seen in the most recent years of sampling. For the high molecular weight phthalates,DEHP seems to have been substituted in part by di-isononyl phthalate (DiNP), but DiNP metabolite levelshave also been declining in the last years. Probably, non-phthalate alternatives increasingly take overfor the phthalates in Germany. A comparison with NHANES (National Health and Nutrition ExaminationSurvey) data from the United States covering the years 1999 to 2012 revealed both similarities anddifferences in phthalate exposure between Germany and the US. Exposure to critical phthalates hasdecreased in both countries with metabolite levels more and more aligning with each other, but highmolecular weight phthalates substituting DEHP (such as DiNP) seem to become more important in theUS than in Germany.
© 2016 Elsevier GmbH. All rights reservedVeröffentlichung Time trend of exposure to the phthalate plasticizer substitute DINCH in Germany from 1999 to 2017: Biomonitoring data on young adults from the Environmental Specimen Bank (ESB)(2019) Kasper-Sonnenberg, Monika; Apel, Petra; Koch, Holger M.; Kolossa-Gehring, Marike; Rüther, MariaDINCH (cyclohexane-1,2-dicarboxylic acid-diisononyl ester) is a phthalate plasticizer substitute introduced into the market in 2002. It is increasingly used especially in the production of toys, food contact materials and medical devices. In this measurement campaign on 24-h urine samples of young adults (20-29 years) from the German Environmental Specimen Bank (ESB) collected in 2010, 2011, 2013, 2015 and 2017 (in total 300 samples, 60 samples/year) we analyzed three specific, oxidized DINCH metabolites (OH-MINCH: cyclohexane-1,2-dicarboxylic acid-mono(hydroxy-isononyl) ester; cx-MINCH: cyclohexane-1,2-dicarboxylic acid-mono(carboxy-isooctyl) ester, oxo-MINCH: cyclohexane-1,2-dicarboxylic acid-mono(oxo-isononyl) ester). We merged these data with earlier data of the ESB from the years 1999-2012 and are now able to report levels and time trends of internal DINCH exposure from 1999 to 2017. After first detections of the major oxidized DINCH metabolite OH-MINCH in 2006 (6.7%) detection rates rapidly increased to 43.3% in 2009, 80% in 2010 and 98.3% in 2011 and 2012. From the year 2013 on we could detect OH-MINCH in every urine sample analyzed. The median concentrations of OH-MINCH rapidly increased from 0.15 (Mü)g/L in 2010 to twice the concentration in 2011 (0.31 (Mü)g/L) with further increases in 2013 (0.37 (Mü)g/L), 2015 (0.59 (Mü)g/L) and 2017 (0.70 (Mü)g/L). Similar increases, albeit at lower detection rates and concentration levels, could be observed for cx-MINCH and oxo-MINCH. All metabolites strongly correlate with each other. For the ESB study population, DINCH exposures are still far below health based guidance values such as the German Human Biomonitoring Value (HBM-I; 4,500 (Mü)g/L for the sum of OH-MINCH and cx-MINCH) or the tolerable daily intake (TDI) of EFSA (1mg/kg/bw/d). The median daily DINCH intake (DI) calculated for 2017 was 0.23 (Mü)g/kg bw/d, thus 4,310-times lower than the TDI. The maximum DI calculated for one individual in 2012 (42.60 (Mü)g/kg bw/d) was a factor of more than 20 below the TDI. The ongoing increase in DINCH exposure needs to be closely monitored in the future, including populations with potentially higher exposures such as children. This close monitoring will enable timely exposure and risk reduction measures if exposures reached critical levels, or if new toxicological data lead to lower health based guidance values. DINCH belongs to the European Human Biomonitoring Initiative (HBM4EU) priority substances for which policy relevant questions still have to be answered. © 2019 Elsevier GmbH. All rights reserved.Veröffentlichung Time course of phthalate cumulative risks to male developmental health over a 27-year period: Biomonitoring samples of the German Environmental Specimen Bank(2020) Apel, Petra; Kortenkamp, Andreas; Conrad, André; Koch, Holger Martin; Kolossa-Gehring, Marike; Rüther, MariaIn several human biomonitoring surveys, changes in the usage patterns of phthalates have come to light, but their influence on the risks associated with combined exposures is insufficiently understood. Based on the largest study to date, the 27-year survey of urinary phthalate metabolite levels in 24-hour urine samples from the German Environmental Specimen Bank, we present a deep analysis of changing phthalate exposures on mixture risks. This analysis adopts the Hazard Index (HI) approach based on the five phthalates DBP, DIBP, BBP, DEHP and DINP. Calculations of the hazard index for each study participant included updated phthalate reference doses for anti-androgenicity (RfDAAs) that take account of new evidence of phthalates' developmental toxicity. The Maximum Cumulative Ratio (MCR) approach was used to establish whether a subjectâ€Ìs combined exposure was dominated by one phthalate or was influenced by several phthalates simultaneously. Generally, over the years there was a shift towards lower HIs and higher MCRs, reflecting an increased complexity of the combined exposures. The decade from 1988 to about 1999 was characterised by rather high HIs of between 3 and 7 (95th percentile) which were driven by exposure to DBP and DEHP, often exceeding their single acceptable exposures. Traditional single phthalate risk assessments would have underestimated these risks by up to 50%. From 2006 onwards, no study participant experienced exposures above acceptable levels for a single phthalate, but combined exposures were still in excess of HI = 1. From 2011 onwards most individuals stayed below HI = 1. In interpreting these results, we caution against the use of HI = 1 as an acceptable limit and develop proposals for improved and more realistic mixture risk assessments that take account of co-exposures to other anti-androgenic substances also capable of disrupting the male reproductive system. From this perspective, we regard HIs between 0.1 and 0.2 as more appropriate for evaluating combined phthalate exposures. Assessed against lowered HIs of 0.1 - 0.2, the combined phthalate exposures of most study participants exceeded acceptable levels in all study years, including 2015. Continued monitoring efforts for phthalate combinations are required to provide the basis for appropriate risk management measures. © 2020 The Authors.Veröffentlichung Harmonized human biomonitoring in European children, teenagers and adults: EU-wide exposure data of 11 chemical substance groups from the HBM4EU Aligned Studies (2014-2021)(2023) Govarts, Eva; Apel, Petra; Gilles, Liese; Rodriguez Martin, Laura; Kolossa-Gehring, Marike; Lange, Rosa; Lemke, Nora; Murawski, Aline; Rüther, Maria; Vogel, Nina; Weber, Till; Zimmermann, PhilippAs one of the core elements of the European Human Biomonitoring Initiative (HBM4EU) a human biomonitoring (HBM) survey was conducted in 23 countries to generate EU-wide comparable HBM data. This survey has built on existing HBM capacity in Europe by aligning national or regional HBM studies, referred to as the HBM4EU Aligned Studies. The HBM4EU Aligned Studies included a total of 10,795 participants of three age groups: (i) 3,576 children aged 6-12 years, (ii) 3,117 teenagers aged 12-18 years and (iii) 4,102 young adults aged 20-39 years. The participants were recruited between 2014 and 2021 in 11-12 countries per age group, geographically distributed across Europe. Depending on the age group, internal exposure to phthalates and the substitute DINCH, halogenated and organophosphorus flame retardants, per- and polyfluoroalkyl substances (PFASs), cadmium, bisphenols, polycyclic aromatic hydrocarbons (PAHs), arsenic species, acrylamide, mycotoxins (deoxynivalenol (total DON)), benzophenones and selected pesticides was assessed by measuring substance specific biomarkers subjected to stringent quality control programs for chemical analysis. For substance groups analyzed in different age groups higher average exposure levels were observed in the youngest age group, i.e., phthalates/DINCH in children versus teenagers, acrylamide and pesticides in children versus adults, benzophenones in teenagers versus adults. Many biomarkers in teenagers and adults varied significantly according to educational attainment, with higher exposure levels of bisphenols, phthalates, benzophenones, PAHs and acrylamide in participants (from households) with lower educational attainment, while teenagers from households with higher educational attainment have higher exposure levels for PFASs and arsenic. In children, a social gradient was only observed for the non-specific pyrethroid metabolite 3-PBA and di-isodecyl phthalate (DiDP), with higher levels in children from households with higher educational attainment. Geographical variations were seen for all exposure biomarkers. For 15 biomarkers, the available health-based HBM guidance values were exceeded with highest exceedance rates for toxicologically relevant arsenic in teenagers (40%), 3-PBA in children (36%), and between 11 and 14% for total DON, Summe (PFOA + PFNA + PFHxS + PFOS), bisphenol S and cadmium. The infrastructure and harmonized approach succeeded in obtaining comparable European wide internal exposure data for a prioritized set of 11 chemical groups. These data serve as a reference for comparison at the global level, provide a baseline to compare the efficacy of the European Commission's chemical strategy for sustainability and will give leverage to national policy makers for the implementation of targeted measures. © 2023 The AuthorsVeröffentlichung German Environmental Specimen Bank: 24-hour urine samples from 1999 to 2017 reveal rapid increase in exposure to the para-phthalate plasticizer di(2-ethylhexyl) terephthalate (DEHTP)(2019) Lessmann, F.; Apel, Petra; Kolossa-Gehring, Marike; Rüther, MariaThe worldwide plasticizer markets are facing constant substitution processes. Many classic ortho-phthalate plasticizers like di(2-ethylhexyl) phthalate (DEHP) are phased out, due to their proven toxicity to reproduction. Assumedly less critical, less regulated plasticizers such as di(2-ethylhexyl) terephthalate (DEHTP) are increasingly applied in consumer near products like toys, food contact materials, and medical devices. With the increasing use of DEHTP, increasing exposures of the general population have to be expected likewise. Human biomonitoring is a well-established tool to determine population exposures. In the present study we investigate the time trend of exposure to DEHTP using 24-hour urine samples of the German Environmental Specimen Bank (ESB) collected from 1999 to 2017. In these samples (60 per odd-numbered year, 600 samples in total) collected from young German adults (20-29 years, equal gender distribution) we determined four specific urinary metabolites as biomarkers of DEHTP exposure. From 1999 to 2009, the main specific urinary metabolite 5cx-MEPTP was quantifiable in <10% of the samples. Thereafter, detection rates and levels constantly increased, in line with rapidly increasing DEHTP consumption volumes. In 2017, all samples had 5cx-MEPTP levels above the limit of quantification (LOQ) with a median concentration of 3.35 ng/L (95th percentile: 12.8 ng/L). The other metabolites were detected less frequently and at lower levels but correlated well with 5cx-MEPTP robustly confirming the increasing DEHTP exposure. All 5cx-MEPTP concentrations were well below the German health based guidance value (HBM-I) of 2800 ng/L for adults. Likewise, the median calculated daily intake, based on 5cx-MEPTP measured in 2017, was 0.74 ng/kg bw*d (95th percentile: 3.86 ng/kg bw*d), still well below the tolerable daily intake (TDI) of 1000 ng/kg bw*d. Based on current toxicological knowledge we can hence conclude that for the population investigated, DEHTP exposure gives no reason for immediate concern. However, the steep ongoing increase of DEHTP exposure warrants further close monitoring in the future, preferably also in sub-populations with known higher exposures to plasticizers, especially children. © 2019 The Authors. Published by Elsevier Ltd.