Person: Rauert, Caren
Lade...
E-Mail-Adresse
Geburtsdatum
Forschungsvorhaben
Organisationseinheiten
Berufsbeschreibung
Nachname
Rauert
Vorname
Caren
Name
2 Ergebnisse
Suchergebnisse
Gerade angezeigt 1 - 2 von 2
Veröffentlichung Selection and application of trophic magnification factors for priority substances to normalize freshwater fish monitoring data under the European Water Framework Directive: a case study(2020) Rüdel, Heinz; Duffek, Anja; Kosfeld, Verena; Fliedner, Annette; Koschorreck, Jan; Rauert, CarenBackground The European Water Framework Directive (WFD) requires the monitoring of biota-preferably fish - to check the compliance of tissue concentrations of priority substances (PS) against substance-specific environmental quality standards (EQSs). In monitoring programs, different fish species are covered, which often are secondary consumers with a trophic level (TL) of about 3. For harmonization, a normalization of monitoring data to a common trophic level is proposed, i.e., TL 4 (predatory fish) in freshwaters, so that data would be sufficiently protective. For normalization, the biomagnification properties of the chemicals can be considered by applying substance-specific trophic magnification factors (TMFs). Alternatively, TL-corrected biomagnification factors (BMFTLs) may be applied. Since it is impractical to derive site-specific TMFs or BMFTLs, often data from literature will be used for normalization. However, available literature values for TMFs and BMFTLs are quite varying. In the present study, the use of literature-derived TMFs and BMFTLs in data normalization is studied more closely. Results An extensive literature evaluation was conducted to identify appropriate TMFs for the WFD PS polybrominated diphenyl ethers (PBDE), hexachlorobenzene, perfluorooctane sulfonate (PFOS), dioxins and dioxin-like compounds (PCDD/F+dl-PCB), hexabromocyclododecane, and mercury. The TMFs eventually derived were applied to PS monitoring data sets of fish from different trophic levels (chub, bream, roach, and perch) from two German rivers. For comparison, PFOS and PBDE data were also normalized using literature-retrieved BMFTLs. Conclusions The evaluation illustrates that published TMFs and BMFTLs for WFD PS are quite variable and the selection of appropriate values for TL 4 normalization can be challenging. The normalized concentrations partly included large uncertainties when considering the range of selected TMFs, but indicated whether an EQS exceedance at TL 4 can be expected. Normalization of the fish monitoring data revealed that levels of substances accumulating in the food web (TMF or BMF>1) can be underestimated when relying on fish with TL<4 for EQS compliance assessment. The evaluation also revealed that TMF specifically derived for freshwater ecosystems in Europe would be advantageous. Field-derived BMFTLs seemed to be no appropriate alternative to TMFs, because they can vary even stronger than TMFs. © The Author(s) 2020Veröffentlichung Food web on ice: a pragmatic approach to investigate the trophic magnification of chemicals of concern(2021) Kosfeld, Verena; Koschorreck, Jan; Rüdel, Heinz; Schlechtriem, Christian; Rauert, CarenBackground The trophic magnification factor (TMF) is a metric that describes the average trophic magnification of a chemical through a food web. TMFs may be used for the risk assessment of chemicals, although TMFs for single compounds can vary considerably between studies despite thorough guidance available in the literature to eliminate potential sources of error. The practical realization of a TMF investigation is quite complex and often only a few chemicals can be investigated due to low sample masses. This study evaluated whether a pragmatic approach involving the large-scale cryogenic sample preparation practices of the German Environmental Specimen Bank (ESB) is feasible. This approach could provide sufficient sample masses for a reduced set of samples allowing screenings for a broad spectrum of substances and by that enabling a systematic comparison of derived TMFs. Furthermore, it was assessed whether plausible TMFs can be derived with the â€ÌFood web on iceâ€Ì approach via a comparison with literature TMF values. Results This investigation at Lake Templin near Potsdam is the first TMF study for a German freshwater ecosystem and aimed to derive TMFs that are appropriate for regulatory purposes. A set of 15 composite biota samples was obtained and analyzed for an extended set of benchmark chemicals such as persistent organic pollutants, mercury and perfluoroalkyl substances. TMFs were calculated for all substances that were present in†>†80% of the biota samples. For example, in the case of polychlorinated biphenyls, TMFs from 1.7 to 2.5 were determined and comparisons to literature TMFs determined in other freshwater ecosystems showed similarities. We showed that 32 out of 35 compounds analyzed had TMFs significantly above 1. In the remaining three cases, the correlations were not statistically significant. Conclusions The derived food web samples allow for an on-demand analysis and are ready-to-use for additional investigations. Since substances with non-lipophilic accumulation properties were also included in the list of analyzed substances, we conclude that the 'Food web on ice' provides samples which could be used to characterize the trophic magnification potential of substances with unknown bioaccumulation properties in the future which in return could be compared directly to the benchmarking patterns provided here. © The Author(s) 2021