Person:
Hoyer, Christian

Lade...
Profilbild
E-Mail-Adresse
Geburtsdatum
Forschungsvorhaben
Berufsbeschreibung
Nachname
Hoyer
Vorname
Christian
Name

Suchergebnisse

Gerade angezeigt 1 - 5 von 5
  • Veröffentlichung
    Selected Trade-Offs and risks associated with land use transitions in central Germany
    (2019) Priess, Jörg A.; Hoyer, Christian; Jäckel, Greta; Schweitzer, Christian
    Future uncertainties and risks for socio-environmental systems are often addressed in the form of scenarios. This study aims to identify the biggest future risks and uncertainties for the study region Central Germany and the question which land use changes and impacts on selected ecosystem services related to agricultural production can be expected in the coming decades. For this purpose, we co-developed scenario storylines along the largest uncertainties, how the region may change with different stakeholders and used environmental models to simulate land-use changes and impacts on selected ecosystem services related to agricultural production. The study revealed that Climate change may have beneficial (e.g. maize, sugar beet) or adverse effects (e.g. barley, wheat) on crop yield levels, depending on crop type and level of climate change. In the scenarios crop production is additionally influenced by different levels of regional preferences influencing crop land extent (e.g., afforestation), crop management (e.g., organic production), and crop types used for food or bioenergy production. As driving factors such as climate change, land availability, and land management all influence agriculture, integrated studies like this are needed to assess future crop production. However, sustainability objectives may prefer other than the most productive agricultural pathways providing additional benefits such as regulating or cultural services. © Springer International Publishing AG, part of Springer Nature 2019
  • Veröffentlichung
    Practical application of spatial ecosystem service models to aid decision support
    (2018) Zulian, Grazia; Hoyer, Christian; Stange, Erik; Woods, Helen
    Ecosystem service (ES) spatial modelling is a key component of the integrated assessments designed to support policies and management practices aiming at environmental sustainability. ESTIMAP ("Ecosystem Service Mapping Tool") is a collection of spatially explicit models, originally developed to support policies at a European scale. We based our analysis on 10 case studies, and 3 ES models. Each case study applied at least one model at a local scale. We analyzed the applications with respect to: the adaptation process; the "precision differential" which we define as the variation generated in the model between the degree of spatial variation within the spatial distribution of ES and what the model captures; the stakeholders' opinions on the usefulness of models. We propose a protocol for adapting ESTIMAP to the local conditions. We present the precision differential as a means of assessing how the type of model and level of model adaptation generate variation among model outputs. We then present the opinion of stakeholders; that in general considered the approach useful for stimulating discussion and supporting communication. Major constraints identified were the lack of spatial data with sufficient level of detail, and the level of expertise needed to set up and compute the models. © 2017 The Authors. Published by Elsevier B.V.
  • Veröffentlichung
    Impacts of the EU's common agricultural policy on biodiversity and ecosystem services
    (2019) Lakner, Sebastian; Holst, Carsten; Dittrich, Andreas; Hoyer, Christian
    Over the past decades, the EU's Common Agricultural Policy has been supporting farmers. At the same time, one could observe a sharp decline in farmland-biodiversity. © Springer International Publishing AG, part of Springer Nature 2019
  • Veröffentlichung
    Digitalisierung nachhaltig gestalten
    (Umweltbundesamt, 2019) Arenhövel, Dorothee; Blum, Christopher; Cohors-Fresenborg, Dieter; Eick, Martina; Frien-Kossolobow, Lisa; Hagenah, Evelyn; Kiso, Claudia; Herrmann, Bianca; Koller, Matthias; Hoyer, Christian; Kohlmeyer, Regina; Köhn, Marina; Krack, Juri; Kristof, Kora; Lorenz, Andreas; Löwe, Christian; Menger, Matthias; Douglas, Martyn; Meurer, Doris; Mutert, Tina; Oehme, Ines; Schäfer, Marco; Schauser, Inke; Schlippenbach, Ulrike von; Schlippenbach, Ulrike von ; Schneider, Christian; Schultz-Krutisch, Thomas; Schweitzer, Christian; Sedello, Cornelia; Veenhoff, Sylvia; Töpfer, Christoph; Vogel, Julia; Wachotsch, Ulrike; Weiß, Ralf; Deutschland. Umweltbundesamt
    Die Digitalisierung transformiert nicht nur unsere Gesellschaft, mit ihr gehen auch Auswirkungen auf die Umwelt einher: Einerseits kann Digitalisierung den Umweltzustand verbessern, z.B. durch digital optimierte Produktionsprozesse. Andererseits können negative Umwelteffekte entstehen, da z. B. der Bedarf an internetfähigen Produkten zunimmt, die bei der Produktion und der Nutzung weitere Ressourcen und Energie benötigen. Mit diesem Impulspapier zeigt das UBA auf, wo durch Digitalisierung Chancen und Herausforderungen für die Umweltpolitik entstehen können. Damit möchte das UBA dazu beitragen, Digitalisierung im Einklang mit dem Leitbild der ⥠Nachhaltigkeit⥠zu gestalten. Quelle: www.umweltbundesamt.de
  • Veröffentlichung
    Sú záo kě chí xú de shú zì huà
    (Umweltbundesamt, 2019) Arenhövel, Dorothee; Blum, Christopher; Cohors-Fresenborg, Dieter; Eick, Martina; Frien-Kossolobow, Lisa; Hagenah, Evelyn; Kiso, Claudia; Herrmann, Bianca; Koller, Matthias; Hoyer, Christian; Kohlmeyer, Regina; Köhn, Marina; Krack, Juri; Kristof, Kora; Lorenz, Andreas; Löwe, Christian; Menger, Matthias; Douglas, Martyn; Meurer, Doris; Mutert, Tina; Oehme, Ines; Schäfer, Marco; Schauser, Inke; Schlippenbach, Ulrike von; Schlippenbach, Ulrike von ; Schneider, Christian; Schultz-Krutisch, Thomas; Schweitzer, Christian; Sedello, Cornelia; Veenhoff, Sylvia; Töpfer, Christoph; Vogel, Julia; Wachotsch, Ulrike; Weiß, Ralf; Deutschland. Umweltbundesamt
    Shùzìhuà bùjin zài chóng sù women de shèhuì, yě zhèngzài duì huánjìng chansheng shenyuan de yingxiang: Yi fangmiàn, shùzìhuà kěyi gaishàn huánjìng zhuàngkuàng, lìrú ta kěyi youhuà shengchan guòchéng lái jiàngdi duì huánjìng de yingxiang. Lìng yi fangmiàn, shùzìhuà yě huì chansheng â€Ìfantán xiàoyìngâ€Ì, duì huánjìng zàochéng bùlì yingxiang, lìrú rénmen duì hùliánwang chanpin de rìjiàn zengjia de xuqiú, daozhìle gèng duo de ziyuán hé néngyuán xiaohào. Tongguò zhè fèn taolùn wénjiàn, déguó liánbang huánjìng shu (UBA) zhanshìle shùzìhuà wéi huánjìng zhèngcè chuàngzào de jiyù hé tiaozhàn, zhi zài wèi sùzào kě chíxù de shùzìhuà zuòchu gòngxiàn. Quelle: www.umweltbundesamt.de