Person: Kolossa-Gehring, Marike
Lade...
E-Mail-Adresse
Geburtsdatum
Forschungsvorhaben
Organisationseinheiten
Berufsbeschreibung
Biologin
Toxikologin
Toxikologin
Nachname
Kolossa-Gehring
Vorname
Marike
Name
3 Ergebnisse
Suchergebnisse
Gerade angezeigt 1 - 3 von 3
Veröffentlichung Parabens in urine of children and adolescents in Germany - human biomonitoring results of the german environmental survey 2014-2017 (GerES V)(2020) Kolossa-Gehring, Marike; Tschersich, Carolin; Murawski, Aline; Rucic, Enrico; Schwedler, GerdaParabens are antimicrobial preservatives used in a wide range of consumer products such as personal care products, cosmetics, pharmaceuticals, and food. Consequently, the general population is ubiquitously exposed to these substances via dermal absorption, ingestion, and inhalation. Parabens promote estrogenic activity and are hence under assessment as endocrine disrupting substances. Urine samples from 3- to 17-year-old children and adolescents (N = 516) living in Germany were analysed for concentrations of nine parabens in the population representative German Environmental Survey for Children and Adolescents 2014-2017 (GerES V). Detection rates and urinary concentrations of the parabens decreased with increasing length of the alkyl chain. Methyl paraben was quantified in 97% of the samples with a geometric mean (GM) concentration of 7.724 (my)g/L (6.714 (my)g/gcreatinine), ethyl paraben was quantified in 69% (GM: 0.943 (my)g/L and 0.825 (my)g/gcrea), and n-propyl paraben in 31% (GM: 0.563 (my)g/L and 0.493 (my)g/gcrea). Concentrations of iso-propyl paraben, butyl paraben, iso-butyl paraben, and benzyl paraben were below the limit of quantification in most samples. Pentyl paraben and heptyl paraben were not detected in any of the samples. Paraben concentrations in urine were found to be associated with frequent usage of leave-on personal care products and cosmetics. Cumulative exposure to parabens (back-calculated daily intakes, expressed as hazard index) was found to be on a level raising concern in up to 14% of the population, mainly driven by n-propyl paraben, and depending on the level of conservativeness and point-of departures used for calculation. © 2020 The Author(s)Veröffentlichung Bisphenol A and six other environmental phenols in urine of children and adolescents in Germany - human biomonitoring results of the German Environmental Survey 2014-2017 (GerES V)(2021) Tschersich, Carolin; Kolossa-Gehring, Marike; Murawski, Aline; Rucic, Enrico; Schwedler, GerdaExposure to environmental phenols such as bisphenol A, benzophenones, 2-phenylphenol, triclosan, and triclocarban is of concern, because of their endocrine disrupting properties and broad application in consumer products. The current body burden of the 3-17-year-old population in Germany to these substances was assessed in first-morning void urine samples (N = 515-516) collected within the population-representative German Environmental Survey for Children and Adolescents 2014-2017 (GerES V). Bisphenol A was the most prominent phenol analysed here, ubiquitously found in almost all samples with a geometric mean (GM) concentration of 1.905 (my)g/L (1.669 (my)g/gcreatinine) and a maximum (MAX) urinary concentration of 399 (my)g/L. Benzophenone-3 and benzophenone-1 were quantified in 35% and 41% of the samples. GM was below the limit of quantification (LOQ) for benzophenone-3 and 0.559 (my)g/L (0.489 (my)g/gcrea) for benzophenone-1, MAX concentrations were 845 (my)g/L and 202 (my)g/L, respectively. In 16% of the samples triclosan was found in quantifiable amounts resulting in a GM below LOQ and a MAX concentration of 801 (my)g/L. Benzophenone-8, 2-phenylphenol and triclocarban were quantified in none or only 1% of the samples. Benzophenone-1 and -3 concentrations were found to be associated with frequent application of personal care products. A comparison with the previous cycle of the survey, GerES IV (2003-2006), showed a decrease of urinary bisphenol A concentrations, mainly in young children. Despite this decrease, the concentration of bisphenol A exceeded the human biomonitoring (HBM) value HBM-I of 0.1 mg/L in 0.11% of the samples. For triclosan, all urinary concentrations were well below the HBM-I value of 2 mg/L. To minimise environmental health risks, it is therefore necessary to maintain a further declining trend for bisphenol A and continue monitoring the exposure to environmental phenols, as well as to monitor substitutes such as bisphenol F and S. © 2020 Published by Elsevier B.V.Veröffentlichung Metabolites of 4-methylbenzylidene camphor (4-MBC), butylated hydroxytoluene (BHT), and tris(2-ethylhexyl) trimellitate (TOTM) in urine of children and adolescents in Germany - human biomonitoring results of the German Environmental Survey GerES V (2014-2017)(2021) Daniels, Anja; Kolossa-Gehring, Marike; Murawski, Aline; Rucic, Enrico; Schmied-Tobies, Maria Irene Hilde; Schwedler, GerdaThe UV filter 4-methylbenzylidene camphor (4-MBC), used in cosmetics, the antioxidant butylated hydroxytoluene (BHT), used inter alia as a food additive and in cosmetics, and the plasticizer tris(2-ethylhexyl) trimellitate (TOTM), used mainly in medical devices as substitute for di-(2-ethylhexyl) phthalate (DEHP), are suspected to have endocrine disrupting effects. Human biomonitoring methods that allow for assessing the internal exposure of the general population to these substances were recently developed in a German cooperation to enhance the use of human biomonitoring. First-morning void urine samples from 3- to 17-year-old children and adolescents living in Germany were analysed for metabolites of 4-MBC (N = 447), BHT (N = 2091), and TOTM (N = 431) in the population-representative German Environmental Survey on Children and Adolescents 2014-2017 (GerES V). 4-MBC metabolites were found in quantifiable amounts only in single cases and exposure levels remained well below health-based guidance values. In contrast, ubiquitous exposure to BHT became evident with a geometric mean (GM) urinary concentration of the metabolite BHT acid of 2.346 (my)g/L (1.989 (my)g/gcreatinine) and a maximum concentration of 248 (my)g/L (269 (my)g/gcrea). The highest GM concentration was found in young children aged 3-5 years, yet no specific sources of exposure could be identified. Also, TOTM metabolites were found in quantifiable amounts only in very few samples. None of these findings could be related to previous hospital treatment or exposure via house dust. The presented results will be the basis to derive reference values for exposure of children and adolescents in Germany to BHT and will facilitate to identify changing exposure levels in the general population. © 2020 The Author(s).