Person:
Kolossa-Gehring, Marike

Lade...
Profilbild
E-Mail-Adresse
Geburtsdatum
Forschungsvorhaben
Berufsbeschreibung
Biologin
Toxikologin
Nachname
Kolossa-Gehring
Vorname
Marike
Name

Suchergebnisse

Gerade angezeigt 1 - 10 von 26
  • Veröffentlichung
    Metabolites of the fragrance 2-(4-tert-butylbenzyl)propionaldehyde (lysmeral) in urine of children and adolescents in Germany - Human biomonitoring results of the German Environmental Survey 2014-2017 (GerES V)
    (2020) Fiedler, Nina; Kolossa-Gehring, Marike; Murawski, Aline; Rucic, Enrico; Schmied-Tobies, Maria Irene Hilde; Schwedler, Gerda
    The synthetic fragrance 2-(4-tert-butylbenzyl)propionaldehyde, also known as lysmeral, butylphenyl methylpropional, lilial, or lily aldehyde, is widely used in cosmetics, personal care products, laundry detergents, and air fresheners. It is classified as suspected to be harmful to fertility and possibly endocrine disrupting. Its maximum concentration in cosmetics is limited. First-morning void urine samples (N = 2133) were analysed for several metabolites of lysmeral (Chemical Abstract Service (CAS) No.: 80-54-6). Samples were collected in the population-representative German Environmental Survey for Children and Adolescents 2014-2017 (GerES V) from German residents aged 3-17 years. Four main metabolites tert-butylbenzoic acid, lysmerol, lysmerylic acid, and hydroxy-lysmerylic acid were found in quantifiable amounts in 100%, 99%, 40%, and 23% of the samples, respectively, with geometric mean concentrations of 10.21 my g/L (8.658 my g/gcrea) for tert-butylbenzoic acid, 1.528 my g/L (1.296 my g/gcrea) for lysmerol, and below the limit of quantification of 0.2 my g/L and 0.4 my g/L for lysmerylic acid and hydroxy-lysmerylic acid, respectively. Girls had higher urinary concentrations of lysmeral metabolites than boys. Usage of fragrances, fabric softener, and personal care products, especially perfume, was positively associated with urinary concentrations of lysmeral metabolites. Source identification builds a basis to derive proposals for reduction of exposure. These results can also provide the foundation for developing reference values for urinary metabolite concentrations of lysmeral in children and adolescents in Germany that will facilitate recognising future exposure trends. © 2020 The Author(s).
  • Veröffentlichung
    Glyphosate and AMPA in human urine of HBM4EU-aligned studies: Part A children
    (2022) Buekers, Jurgen; Remy, Sylvie; Bessems, Jos; Kolossa-Gehring, Marike; Vogel, Nina
    Few data are available on the exposure of children to glyphosate (Gly) in Europe. Within HBM4EU, new HBM exposure data were collected from aligned studies at five sampling sites distributed over Europe (studies: SLO CRP (SI); ORGANIKO (CY); GerES V-sub (DE); 3XG (BE); ESTEBAN (FR)). Median Gly concentrations in urine were below or around the detection limit (0.1 Ìg/L). The 95th percentiles ranged between 0.18 and 1.03 Ìg Gly/L. The ratio of AMPA (aminomethylphosphonic acid; main metabolite of Gly) to Gly at molar basis was on average 2.2 and the ratio decreased with higher Gly concentrations, suggesting that other sources of AMPA, independent of metabolism of Gly to AMPA in the monitored participants, may concurrently operate. Using reverse dosimetry and HBM exposure data from five European countries (east, west and south Europe) combined with the proposed ADI (acceptable daily intake) of EFSA for Gly of 0.1 mg/kg bw/day (based on histopathological findings in the salivary gland of rats) indicated no human health risks for Gly in the studied populations at the moment. However, the absence of a group ADI for Gly+AMPA and ongoing discussions on e.g., endocrine disrupting effects cast some uncertainty in relation to the current single substance ADI for Gly. The carcinogenic effects of Gly are still debated in the scientific community. These outcomes would influence the risk conclusions presented here. Finally, regression analyses did not find clear associations between urinary exposure biomarkers and analyzed potential exposure determinants. More information from questionnaires targeting exposure-related behavior just before the sampling is needed. © 2022 by the authors
  • Veröffentlichung
    PFASs: What can we learn from the European Human Biomonitoring Initiative HBM4EU
    (2023) Uhl, Maria; Schoeters, Greet; Kolossa-Gehring, Marike; Govarts, Eva
    Per- and polyfluoroalkyl substances (PFASs) were one of the priority substance groups selected which have been investigated under the ambitious European Joint programme HBM4EU (2017-2022). In order to answer policy relevant questions concerning exposure and health effects of PFASs in Europe several activities were developed under HBM4EU namely i) synthesis of HBM data generated in Europe prior to HBM4EU by developing new platforms, ii) development of a Quality Assurance/Quality Control Program covering 12 biomarkers of PFASs, iii) aligned and harmonized human biomonitoring studies of PFASs. In addition, some cohort studies (on mother-child exposure, occupational exposure to hexavalent chromium) were initiated, and literature researches on risk assessment of mixtures of PFAS, health effects and effect biomarkers were performed. The HBM4EU Aligned Studies have generated internal exposure reference levels for 12 PFASs in 1957 European teenagers aged 12-18 years. The results showed that serum levels of 14.3% of the teenagers exceeded 6.9 (micro)g/L PFASs, which corresponds to the EFSA guideline value for a tolerable weekly intake (TWI) of 4.4 ng/kg for some of the investigated PFASs (PFOA, PFOS, PFNA and PFHxS). In Northern and Western Europe, 24% of teenagers exceeded this level. The most relevant sources of exposure identified were drinking water and some foods (fish, eggs, offal and locally produced foods). HBM4EU occupational studies also revealed very high levels of PFASs exposure in workers (P95: 192 (micro)g/L in chrome plating facilities), highlighting the importance of monitoring PFASs exposure in specific workplaces. In addition, environmental contaminated hotspots causing high exposure to the population were identified. In conclusion, the frequent and high PFASs exposure evidenced by HBM4EU strongly suggests the need to take all possible measures to prevent further contamination of the European population, in addition to adopting remediation measures in hotspot areas, to protect human health and the environment. HBM4EU findings also support the restriction of the whole group of PFASs. Further, research and definition for additional toxicological dose-effect relationship values for more PFASs compounds is needed.
  • Veröffentlichung
    PFAS levels and determinants of variability in exposure in European teenagers - Results from the HBM4EU aligned studies (2014-2021)
    (2022) Richterová, Denisa; Govarts, Eva; Fábelová, L; Kolossa-Gehring, Marike; Vogel, Nina
    Background Perfluoroalkyl substances (PFAS) are man-made fluorinated chemicals, widely used in various types of consumer products, resulting in their omnipresence in human populations. The aim of this study was to describe current PFAS levels in European teenagers and to investigate the determinants of serum/plasma concentrations in this specific age group. Methods PFAS concentrations were determined in serum or plasma samples from 1957 teenagers (12-18 years) from 9 European countries as part of the HBM4EU aligned studies (2014-2021). Questionnaire data were post-harmonized by each study and quality checked centrally. Only PFAS with an overall quantification frequency of at least 60% (PFOS, PFOA, PFHxS and PFNA) were included in the analyses. Sociodemographic and lifestyle factors were analysed together with food consumption frequencies to identify determinants of PFAS exposure. The variables study, sex and the highest educational level of household were included as fixed factors in the multivariable linear regression models for all PFAS and each dietary variable was added to the fixed model one by one and for each PFAS separately. Results The European exposure values for PFAS were reported as geometric means with 95% confidence intervals (CI): PFOS [2.13 (mirco)g/L (1.63-2.78)], PFOA ([0.97 (mirco)g/L (0.75-1.26)]), PFNA [0.30 (mirco)g/L (0.19-0.45)] and PFHxS [0.41 (micro)g/L (0.33-0.52)]. The estimated geometric mean exposure levels were significantly higher in the North and West versus the South and East of Europe. Boys had significantly higher concentrations of the four PFAS compared to girls and significantly higher PFASs concentrations were found in teenagers from households with a higher education level. Consumption of seafood and fish at least 2 times per week was significantly associated with 21% (95% CI: 12-31%) increase in PFOS concentrations and 20% (95% CI: 10-31%) increase in PFNA concentrations as compared to less frequent consumption of seafood and fish. The same trend was observed for PFOA and PFHxS but not statistically significant. Consumption of eggs at least 2 times per week was associated with 11% (95% CI: 2-22%) and 14% (95% CI: 2-27%) increase in PFOS and PFNA concentrations, respectively, as compared to less frequent consumption of eggs. Significantly higher PFOS concentrations were observed for participants consuming offal (14% (95% CI: 3-26%)), the same trend was observed for the other PFAS but not statistically significant. Local food consumption at least 2 times per week was associated with 40% (95% CI: 19-64%) increase in PFOS levels as compared to those consuming local food less frequently. Conclusion This work provides information about current levels of PFAS in European teenagers and potential dietary sources of exposure to PFAS in European teenagers. These results can be of use for targeted monitoring of PFAS in food. © 2022 The Authors.
  • Veröffentlichung
    Human-Biomonitoring für Europa (HBM4EU) - erste Einblicke in die Ergebnisse der Initiative
    (2022) Apel, Petra; Kolossa-Gehring, Marike; Weise, Philipp
    Beim Human-Biomonitoring wird die innere Schadstoffbelastung des Menschen aus verschiedenen Quellen wie Nahrung, Alltagsgegenständen oder Atemluft erfasst, indem z.B. Blut und Urin analysiert werden. Um das Human-Biomonitoring in Europa zu fördern und zu koordinieren, wurde 2017 das Projekt "Human-Biomonitoring für Europa" (HBM4EU) begonnen, an dem sich 30 Länder, die Europäische Umweltagentur und die Europäische Kommission beteiligt haben. Im Juni 2022 wurde das Projekt abgeschlossen. Vergleichbare und zuverlässige Belastungsdaten konnten für eine breite Palette von Umweltchemikalien erfasst und einheitlich bewertet werden. Weitere wichtige Erfolge der Initiative waren die Etablierung eines Kontrollprogramms zur Qualitätssicherung, ein Konzept zur Vereinheitlichung zukünftiger HBM-Studien, eine gemeinsame Strategie zur Ableitung von gesundheitsbezogenen Beurteilungswerten (HBM Guidance Values - HBM-GVs) und die Einrichtung nationaler Gremien. Die gewonnenen Belastungsdaten sind über die Informationsplattform für die Überwachung von Chemikalien (IPCHEM) und das EU HBM-Dashboard zugänglich. Publikationen sind über die HBM4EU-Onlinebibliothek frei verfügbar. Insgesamt zeigen die Ergebnisse, dass die Belastungen der EU-Bevölkerung für viele Chemikalien wie etwa Phthalate und perfluorierte Alkylsubstanzen (PFAS) zu hoch sind und weiterhin Handlungsbedarf seitens der Politik besteht. Das im Projekt HBM4EU generierte Wissen kann die politischen Entscheidungsträger:innen bei der Verbesserung der Chemikalienââą Ì, Umwelt- und Gesundheitspolitik unterstützen. © Der/die Autor(en) 2022
  • Veröffentlichung
    Human urinary arsenic species, associated exposure determinants and potential health risks assessed in the HBM4EU Aligned Studies
    (2023) Buekers, Jurgen; Baken, Kirsten; Govarts, Eva; Kolossa-Gehring, Marike; Vogel, Nina
    The European Joint Programme HBM4EU coordinated and advanced human biomonitoring (HBM) in Europe in order to provide science-based evidence for chemical policy development and improve chemical management. Arsenic (As) was selected as a priority substance under the HBM4EU initiative for which open, policy relevant questions like the status of exposure had to be answered. Internal exposure to inorganic arsenic (iAs), measured as Toxic Relevant Arsenic (TRA) (the sum of As(III), As(V), MMA, DMA) in urine samples of teenagers differed among the sampling sites (BEA (Spain) > Riksmaten adolescents (Sweden), ESTEBAN (France) > FLEHS IV (Belgium), SLO CRP (Slovenia)) with geometric means between 3.84 and 8.47 mikrog/L. The ratio TRA to TRA + arsenobetaine or the ratio TRA to total arsenic varied between 0.22 and 0.49. Main exposure determinants for TRA were the consumption of rice and seafood. When all studies were combined, Pearson correlation analysis showed significant associations between all considered As species. Higher concentrations of DMA, quantitatively a major constituent of TRA, were found with increasing arsenobetaine concentrations, a marker for organic As intake, e.g. through seafood, indicating that other sources of DMA than metabolism of inorganic As exist, e.g. direct intake of DMA or via the intake of arsenosugars or -lipids. Given the lower toxicity of DMA(V) versus iAs, estimating the amount of DMA not originating from iAs, or normalizing TRA for arsenobetaine intake could be useful for estimating iAs exposure and risk. Comparing urinary TRA concentrations with formerly derived biomonitoring equivalent (BE) for non-carcinogenic effects (6.4 mikrog/L) clearly shows that all 95th percentile exposure values in the different studies exceeded this BE. This together with the fact that cancer risk may not be excluded even at lower iAs levels, suggests a possible health concern for the general population of Europe. © 2023 The Authors
  • Veröffentlichung
    2-Mercaptobenzothiazole in urine of children and adolescents in Germany - Human biomonitoring results of the German Environmental Survey 2014-2017 (GerES V)
    (2020) Conrad, André; Kolossa-Gehring, Marike; Murawski, Aline; Rucic, Enrico; Schmied-Tobies, Maria Irene Hilde; Schwedler, Gerda
    2-Mercaptobenzothiazole (2-MBT) is widely used as a vulcanisation accelerator and is contained in many products made from natural rubber, e.g. car tires. Additionally, it is used as a fungicide in paint or fibre. Systemically human exposure to 2-MBT can occur via dermal and oral uptake or inhalation. Locally, 2-MBT can cause skin sensitisation. The International Agency for Research on Cancer (IARC) classified 2-MBT as probably carcinogenic to humans. 516 urine samples of 3- to 17-year-old children and adolescents living in Germany were analysed for the concentration of 2-MBT in the population representative German Environmental Survey for Children and Adolescents 2014-2017 (GerES V). 2-MBT was quantified above the limit of quantification (LOQ) of 1.0 my g/L in 50% of the 516 samples analysed. The geometric mean of urinary 2-MBT concentration was 1.018 my g/L and 0.892 my g/gcreatinine, the arithmetic mean was 1.576 my g/L (1.351 myg/gcrea). The median concentration was below the LOQ. Analyses of subgroups revealed higher 2-MBT concentrations in children aged 3-5 years compared to 14- to 17-year-old adolescents. All urinary 2-MBT concentrations were well below the health-based guidance value HBM-I for children of 4.5 my g/L. Therefore, current exposure levels are - according to current knowledge - not of concern. For the first time, reference values can be derived for 2-MBT for children and adolescents in Germany. This will facilitate to recognise changing exposure levels in this population group in Germany and identification of unusually high exposures. © 2020 The Authors.
  • Veröffentlichung
    Exposure to phthalates in European children, adolescents and adults since 2005: a harmonized approach based on existing HBM data in the HBM4EU Initiative
    (2023) Kolossa-Gehring, Marike; Lange, Rosa; Murawski, Aline; Rüther, Maria; Gerofke, Antje; Schmidt, Phillipp; Springer, Andrea; Vogel, Nina; Weber, Till
    Phthalates are mainly used as plasticizers and are associated inter alia with adverse effects on reproductive functions. While more and more national programs in Europe have started monitoring internal exposure to phthalates and its substitute 1,2-Cyclohexanedicarboxylic acid (DINCH), the comparability of results from such existing human biomonitoring (HBM) studies across Europe is challenging. They differ widely in time periods, study samples, degree of geographical coverage, design, analytical methodology, biomarker selection, and analytical quality assurance level. The HBM4EU initiative has gathered existing HBM data of 29 studies from participating countries, covering all European regions and Israel. The data were prepared and aggregated by a harmonized procedure with the aim to describe - as comparably as possible - the EU-wide general population's internal exposure to phthalates from the years 2005 to 2019. Most data were available from Northern (up to 6 studies and up to 13 time points), Western (11; 19), and Eastern Europe (9; 12), e.g., allowing for the investigation of time patterns. While the bandwidth of exposure was generally similar, we still observed regional differences for Butyl benzyl phthalate (BBzP), Di(2-ethylhexyl) phthalate (DEHP), Di-isononyl phthalate (DiNP), and Di-isobutyl phthalate (DiBP) with pronounced decreases over time in Northern and Western Europe, and to a lesser degree in Eastern Europe. Differences between age groups were visible for Di-n-butyl phthalate (DnBP), where children (3 to 5-year olds and 6 to 11-year olds) had lower urinary concentrations than adolescents (12 to 19-year-olds), who in turn had lower urinary concentrations than adults (20 to 39-year-olds). This study is a step towards making internal exposures to phthalates comparable across countries, although standardized data were not available, targeting European data sets harmonized with respect to data formatting and calculation of aggregated data (such as developed within HBM4EU), and highlights further suggestions for improved harmonization in future studies. © 2023 by the authors
  • Veröffentlichung
    Phthalate metabolites in 24-h urine samples of the German Environmental Specimen Bank (ESB) from 1988 to 2015 and a comparison with US NHANES data from 1999 to 2012
    (2017) Koch, Holger M.; Apel, Petra; Schütze, Andre; Conrad, André; Pälmke, Claudia; Kolossa-Gehring, Marike; Brüning, Thomas; Rüther, Maria
    The German Environmental Specimen Bank (ESB) continuously collects 24-h urine samples since theearly 1980s in Germany. In this study we analyzed 300 urine samples from the years 2007 to 2015 for 21phthalate metabolites (representing exposure to 11 parent phthalates) and combined the data with twoprevious retrospective measurement campaigns (1988 to 2003 and 2002 to 2008). The combined datasetcomprised 1162 24-h urine samples spanning the years 1988 to 2015. With this detailed set of humanbiomonitoring data we describe the time course of phthalate exposure in Germany over a time frame of27 years. For the metabolites of the endocrine disrupting phthalates di(2-ethylhexyl) phthalate (DEHP),di-n-butyl phthalate (DnBP) and butylbenzyl phthalate (BBzP) we observed a roughly ten-fold decline inmedian metabolite levels from their peak levels in the late 1980s/early 1990s compared to most recentlevels from 2015. Probably, bans (first enacted in 1999) and classifications/labelings (enacted in 2001 and2004) in the European Union lead to this drop. A decline in di-isobutyl phthalate (DiBP) metabolite levelsset in only quite recently, possibly due to its later classification as a reproductive toxicant in the EU in 2009.In a considerable number of samples collected before 2002 health based guidance values (BE, HBM I) havebeen exceeded for DnBP (27.2%) and DEHP (2.3%) but also in recent samples some individual exceedancescan still be observed (DEHP 1.0%). A decrease in concentration for all low molecular weight phthalates,labelled or not, was seen in the most recent years of sampling. For the high molecular weight phthalates,DEHP seems to have been substituted in part by di-isononyl phthalate (DiNP), but DiNP metabolite levelshave also been declining in the last years. Probably, non-phthalate alternatives increasingly take overfor the phthalates in Germany. A comparison with NHANES (National Health and Nutrition ExaminationSurvey) data from the United States covering the years 1999 to 2012 revealed both similarities anddifferences in phthalate exposure between Germany and the US. Exposure to critical phthalates hasdecreased in both countries with metabolite levels more and more aligning with each other, but highmolecular weight phthalates substituting DEHP (such as DiNP) seem to become more important in theUS than in Germany.
    © 2016 Elsevier GmbH. All rights reserved
  • Veröffentlichung
    Benzene metabolite SPMA and acrylamide metabolites AAMA and GAMA in urine of children and adolescents in Germany - human biomonitoring results of the German Environmental Survey 2014-2017 (GerES V)
    (2020) Bethke, Robert; Kolossa-Gehring, Marike; Murawski, Aline; Rucic, Enrico; Schmied-Tobies, Maria Irene Hilde; Schwedler, Gerda
    Benzene and acrylamide are carcinogenic substances contained inter alia in tobacco smoke. The mercapturic acid metabolites of benzene, N-acetyl-S-phenyl-L-cysteine (SPMA), and of acrylamide, N-acetyl-S-(3-amino-3-oxopropyl)-cysteine (AAMA) and N-acetyl-S-(3-amino-2-hydroxy-3-oxopropyl)-cysteine (GAMA), were analysed in 2260 first-morning void urine samples from children and adolescents aged 3-17 years, participating in the population-representative German Environmental Survey on Children and Adolescents, GerES V 2014-2017. SPMA was detected in 98% of the participants with a geometric mean (GM) of 0.097 (my)g/L urine. Smokers had about 10-fold higher levels of the benzene metabolite SPMA than non-smokers. The sample comprises of 48 self-reported smokers, mainly in the oldest age group (14-17-year-olds). Second-hand smoke exposure, living near busy or very busy roads, and using domestic fuels for heating were additionally associated with higher benzene metabolite levels. SPMA levels in GerES V were lower compared to levels found in other countries, which in part however may reflect different proportions of smokers. The acrylamide metabolites AAMA and GAMA were detected in 100% of the participants with a GM of 72.6 (my)g/L urine for AAMA and 15.0 (my)g/L urine for GAMA. Smoking children and adolescents had about 2.5-fold higher AAMA levels than non-smoking ones. The frequency of consumption of french-fried potatoes and potato crisps consumption was also positively associated with urinary AAMA and GAMA levels. Compared to the urinary AAMA and GAMA levels in Germany and other countries, levels in GerES V tended to be higher than in the few studies reported. The urinary levels of the benzene biomarker SPMA, and the acrylamide biomarkers AAMA and GAMA build the basis to derive reference values for the exposure of children and adolescents in Germany. The results reveal options for exposure reduction mainly in personal choices regarding smoking and diet, but also requiring policy to maintain efforts in non-smoking regulations and improving ambient air quality. Providing these results also to the European HBM Initiative HBM4EU will contribute to gain knowledge on the exposure of the European population, the health impact of carcinogens and thus providing support for substantiated exposure assessment. © 2020 The Author(s)