Person: Bannick, Claus Gerhard
Lade...
E-Mail-Adresse
Geburtsdatum
Forschungsvorhaben
Organisationseinheiten
Berufsbeschreibung
Nachname
Bannick
Vorname
Claus Gerhard
Name
3 Ergebnisse
Suchergebnisse
Gerade angezeigt 1 - 3 von 3
Veröffentlichung Identification and Quantification of Microplastic in Sewage Systems by TED-GC-MS(2019) Altmann, Korinna; Goedecke, Caroline; Bannick, Claus GerhardThe number of publications reporting the amount of microplastic (MP) all over the world increased rapidly. Methods used so far are very time consuming and not able to provide information on total contents. As harmonised sampling, sample preparation and analysis strategies are missing different studies can hardly be compared and quantitative data, including identification and mass contents of the polymers found, are missing. This leads to a lack of comprehensive understanding of MP occurrence, source and entry pathways into the environment. We developed a method, Thermal Extraction/Desorption-Gaschromatography-Massspectrometry, as a fast screening method for MP analysis. Solid residues of water samples are heated up to 600 C under a N2 atmosphere without any sample preparation. The collected decomposition gases are separated in a gas chromatography system and detected in a mass spectrometer. Mass contents of the identified polymers can be calculated. In this presentation we will show first results from the influent of the wastewater treatment plant Kaiserslautern (Germany) and its combined sewage system as possibly entry pathway. In order to determine the relevance of wastewater split streams analysis of grey water will be conducted. Samples are fractionally filtered by a sieve cascade with mesh sizes of 500, 100, 50 Ìm. Quelle: https://opus4.kobv.de/Veröffentlichung Garment ageing in a Laundry care process under household-like conditions(2023) Heller, Claudia; Altmann, Korinna; Bannick, Claus Gerhard; Braun, Ulrike; Kerndorff, AlexanderThis study reflects typical consumer textile washing behaviour while taking into account existing standards in the household appliance and garment industries. Two garments were washed repeatedly with artificial dirt and detergent 30 times. The collected washing water was separated using fractional filtration. Textile physical tests were used to follow property changes of the garments, the microplastic release is determined using thermoextraction/desorbtionâ€Ìgas chromatography/mass spectrometry and the total organic carbon was measured as a sum parameter for the organic bonded carbon. This article shows the importance of a reality-based approach when investigating microplastics of textile origin in the laundry care process. Deposits of detergent and dirt on the textiles were detected. The total mass of sieve residues was much higher than the release of synthetic polymers. The cotton content of the garments causes a much higher fibre release than synthetic fibres. Both will lead to false results by purely gravimetric analysis because nonpolymer fibres will be included microplastic mass. The results cannot be generalised only by the main polymer type, knowledge of the textile construction must be included for final evaluation. © 2023 Wiley-VCH GmbH.Veröffentlichung Development of a routine screening method for the microplastic mass content in a wastewater treatment plant effluent(2022) Goedecke, Caroline; Eisentraut, Paul; Bannick, Claus Gerhard; Altmann, Korinna; Barthel, Anne-Kathrin; Obermaier, Nathan; Braun, Ulrike; Ricking, MathiasAn investigation of microplastic (MP) occurrence in a municipal wastewater treatment plant (WWTP) effluent with tertiary treatment was carried out. Representative sample volumes of 1 m3 were taken by applying a fractionated filtration method (500, 100, and 50 (micro)m mesh sizes). The detection of MP mass fractions by thermal extraction desorption-gas chromatography/mass spectrometry (TED-GC/MS) was achieved without the previously required additional sample pretreatment for the first time. Different types of quantification methods for the evaluation of TED-GC/MS data were tested, and their accuracy and feasibility have been proven for real samples. Polyethylene, polystyrene, and polypropylene were identified in effluent samples. The polymer mass content varied significantly between 5 and 50 mg m-3. A correlation between the MP load and the quantity of suspended matter in the WWTP effluents, particle size distribution, particle type, and operation day (i.e., weekday, season, and capacity) was not found. It can be concluded that a meaningful assessment of WWTPs requires a comprehensive sampling campaign with varying operation conditions. © 2022 The Authors