Person:
Scheuschner, Thomas

Lade...
Profilbild
E-Mail-Adresse
Geburtsdatum
Forschungsvorhaben
Berufsbeschreibung
Nachname
Scheuschner
Vorname
Thomas
Name

Suchergebnisse

Gerade angezeigt 1 - 6 von 6
  • Veröffentlichung
    Assessing the relevance of atmospheric heavy metal deposition with regard to ecosystem integrity and human health in Germany
    (2021) Schultow, Angela; Scheuschner, Thomas; Schröder, Winfried
    Background The critical values for heavy metal fluxes for protecting the human health and ecosystem's integrity in Germany, especially the Federal Immission Control Act (BImSchG in Gesetz zum Schutz vor schädlichen Umwelteinwirkungen durch Luftverunreinigungen, Geräusche, Erschütterungen und ähnliche Vorgänge (Bundes-Immissionsschutzgesetz-BImSchG), 1974/2020) with its implementing ordinances (especially the 39th BImSchV in Neununddreißigste Verordnung zur Durchführung des Bundes-Immissionsschutzgesetzes Verordnung über Luftqualitätsstandards und Emissionshöchstmengen vom 2. August 2010, zuletzt geändert durch Art. 2 V v. 18.7.2018 I 1222, 2010, 2018), the Federal Soil Protection Ordinance (BBodSchV in Bundes-Bodenschutz- und Altlastenverordnung (BBodSchV) (GBBl. I S. 1554 vom 12. Juli 1999, zuletzt durch Artikel 3 Absatz 4 der Verordnung vom 27. September 2017 (BGBl. I S. 3465) ge-ändert, 1999/2015) and the Technical Instructions on Air Quality Control (Luft in Erste Allgemeine Verwaltungsvorschrift zum Bundes-Immissionsschutzgesetz (Technische Anleitung zur Reinhaltung der Luft - TA Luft), 2002), were analysed, assessed with regard to the possibilities and applicability of the risk assessment, and were prepared for evaluation in comparison to the respective atmospheric deposition modelled with the chemical transport model LOTOS-EUROS. For a comparison of the critical values, the critical loads for cadmium, lead and mercury inputs were updated for Germany on a scale of 1:1 Mio, and critical loads for additional heavy metals (arsenic, copper, zinc, chromium and nickel) were computed, respectively. Due to the methodological differences of their derivation, the critical values of the individual regulations are only conditionally comparable to one another and to the critical loads. Sometimes major differences exist due to different levels of protection, various protective goods and the effect relationship. Only with the critical load calculations, inputs and outputs can be balanced. Results For two unregulated metals (thallium and vanadium) a preliminary rough estimate of the risk of inputs in the receptors was provided as a calculated balance for in- and acceptable outputs. The uncertainty analysis shows, that the highest deviations occurred in the metal contents in plants used to calculate the output through the harvesting of the biomass. The critical load calculation has the highest sensitivity to changes in the pH value. The critical loads for heavy metal fluxes for protecting the human health (CL(M)drink) and ecosystem's integrity CL(M)eco) for arsenic, nickel, zinc and chromium were not exceeded in Germany for 2009-2011. CL(M)drink and CL(M)eco are exceeded by Hg and Pb inputs, especially in the low rainfall regions of Germany (Brandenburg, lowlands of Saxony-Anhalt, Leipzig Bay, Ruhr valley) with wood vegetation; in addition CL(Cu)eco is exceeded by copper deposition 2010 in the area surrounding Berlin and in the Ruhr valley. The critical loads for cadmium for the protection of drinking water CL(Cd)drink and for the protection of human food from wheat products CL(Cd)food are not exceeded in the German data set due to atmospheric deposition in 2010, but in the worst-case scenario the maximum atmospheric deposition in 2010 could exceeded the lowest CL(Cd)drink and CL(Cd)food. Conclusions That assessment of risks was based on deposition from the atmosphere, which represents only a fraction of the inputs compared to the inputs from the use of fertilisers and other sources. This study suggests the conclusive recommendation to methodically deepen and broaden the assessment and evaluation of atmospheric deposition. This is especially true for the spatial validation and specification of exposure for ecosystem types. © 2021 The Author(s)
  • Veröffentlichung
    Currently legislated decreases in nitrogen deposition will yield only limited plant species recovery in European forests
    (2018) Dirnböck, Thomas; Pröll, Gisela; Austnes, Kari; Scheuschner, Thomas; Deutschland. Umweltbundesamt
    Atmospheric nitrogen (N) pollution is considered responsible for a substantial decline in plant species richness and for altered community structures in terrestrial habitats worldwide. Nitrogen affects habitats through direct toxicity, soil acidification, and in particular by favoring fast-growing species. Pressure from N pollution is decreasing in some areas. In Europe (EU28), overall emissions of NO x declined by more than 50% while NH3 declined by less than 30% between the years 1990 and 2015, and further decreases may be achieved. The timescale over which these improvements will affect ecosystems is uncertain. Here we use 23 European forest research sites with high quality long-term data on deposition, climate, soil recovery, and understory vegetation to assess benefits of currently legislated N deposition reductions in forest understory vegetation. A dynamic soil model coupled to a statistical plant species niche model was applied with site-based climate and deposition. We use indicators of N deposition and climate warming effects such as the change in the occurrence of oligophilic, acidophilic, and cold-tolerant plant species to compare the present with projections for 2030 and 2050. The decrease in N deposition under current legislation emission (CLE) reduction targets until 2030 is not expected to result in a release from eutrophication. Albeit the model predictions show considerable uncertainty when compared with observations, they indicate that oligophilic forest understory plant species will further decrease. This result is partially due to confounding processes related to climate effects and to major decreases in sulphur deposition and consequent recovery from soil acidification, but shows that decreases in N deposition under CLE will most likely be insufficient to allow recovery from eutrophication. Quelle: www.iopscience.iop.org
  • Veröffentlichung
    Modelling study of soil C, N and pH response to air pollution and climate change using European LTER site observations
    (2018) Holmberg, Maria; Aherne, Julian; Austens, Kari; Scheuschner, Thomas
  • Veröffentlichung
    Ermittlung und Bewertung der Einträge von versauernden und eutrophierenden Luftschadstoffen in terrestrische Ökosysteme (PINETI2)
    (Umweltbundesamt, 2017) Schlutow, Angela; Bouwer, Yolandi; Scheuschner, Thomas; Öko-Data Gesellschaft für Ökosystemanalyse und Umweltdatenmanagement (Strausberg); Deutschland. Umweltbundesamt; Geupel, Markus
    Zur Bewertung der Risiken, denen naturnahe Ökosysteme durch den Eintrag von Luftschadstoffen ausgesetzt sind, wurde in diesem Vorhaben der Critical-Load-Ansatz nach der einfachen Massenbilanzmethode verwendet. Wird der ökosystemspezifische Critical Load durch die ebenfalls in diesem Vorhaben ermittelten Stoffeinträge für die Jahre 2009, 2010 und 2011 überschritten, sind die Ökosysteme durch den Eintrag von Schwefel- und Stickstoffverbindungen einem Versauerungsrisiko ausgesetzt bzw. unterliegen einer unzulässigen Eutrophierung (nur Stickstoff). Damit einher geht die Gefährdung der Biodiversität in Deutschland. Beim Schutz vor Versauerung zeigen die Maßnahmen zur Luftreinhaltung große Wirkung. So verminderte sich der Anteil an Ökosystemen, die von Überschreitungen des Critical Load für Säureeinträge betroffenen sind, von ehemals über 80 Prozent im Jahr 1990 auf nunmehr ca. 10 Prozent (Jahr 2011, seesalzkorrigiert). Deutlich geringere Entlastungen gab es beim Schutz vor Eutrophierung, wo auch im Jahr 2011 noch ca. 65 Prozent aller Ökosysteme durch Überschreitung der zulässigen Stickstoffeinträge gefährdet bleiben. Quelle: Forschungsbericht
  • Veröffentlichung
    Modelling changes in secondary inorganic aerosol formation and nitrogen deposition in Europe from 2005 to 2030
    (2022) Jonson, Jan Eiof; Fagerli, Hilde; Scheuschner, Thomas; Tsyro, Svetlana
    Secondary inorganic PM2.5 particles are formed from SOx (SO2+SO42-), NOx (NO+NO2), and NH3 emissions, through the formation of either ammonium sulfate ((NH4)2SO4) or ammonium nitrate (NH4NO3). EU limits and WHO guidelines for PM2.5 levels are frequently exceeded in Europe, in particular in the winter months. In addition the critical loads for eutrophication are exceeded in most of the European continent. Further reductions in NH3 emissions and other PM precursors beyond the 2030 requirements could alleviate some of the health burden from fine particles and also reduce the deposition of nitrogen to vulnerable ecosystems. Using the regional-scale EMEP/MSC-W model, we have studied the effects of year 2030 NH3 emissions on PM2.5 concentrations and depositions of nitrogen in Europe in light of present (2017), past (2005), and future (2030) conditions. Our calculations show that in Europe the formation of PM2.5 from NH3 to a large extent is limited by the ratio between the emissions of NH3 on one hand and SOx plus NOx on the other hand. As the ratio of NH3 to SOx and NOx is increasing, the potential to further curb PM2.5 levels through reductions in NH3 emissions is decreasing. Here we show that per gram of NH3 emissions mitigated, the resulting reductions in PM2.5 levels simulated using 2030 emissions are about a factor of 2.6 lower than when 2005 emissions are used. However, this ratio is lower in winter. Thus further reductions in the NH3 emissions in winter may have similar potential to SOx and NOx in curbing PM2.5 levels in this season. Following the expected reductions of NH3 emission, depositions of reduced nitrogen (NH3+NH4+) should also decrease in Europe. However, as the reductions in NOx emission are larger than for NH3, the fraction of total nitrogen (reduced plus oxidised nitrogen) deposited as reduced nitrogen is increasing and may exceed 60 % in most of Europe by 2030. Thus the potential for future reductions in the exceedances of critical loads for eutrophication in Europe will mainly rely on the ability to reduce NH3 emissions. © Author(s) 2022
  • Veröffentlichung
    Ermittlung und Bewertung der Einträge von versauernden und eutrophierenden Luftschadstoffen in terrestrische Ökosysteme (PINETI2)
    (2017) Schlutow, Angela; Bouwer, Yolandi; Scheuschner, Thomas; Öko-Data Gesellschaft für Ökosystemanalyse und Umweltdatenmanagement (Strausberg)
    Zur Bewertung der Risiken, denen naturnahe Ökosysteme durch den Eintrag von Luftschadstoffen ausgesetzt sind, wurde in diesem Vorhaben der Critical-Load-Ansatz nach der einfachen Massenbilanzmethode verwendet. Wird der ökosystemspezifische Critical Load durch die ebenfalls in diesem Vorhaben ermittelten Stoffeinträge für die Jahre 2009, 2010 und 2011 überschritten, sind die Ökosysteme durch den Eintrag von Schwefel- und Stickstoffverbindungen einem Versauerungsrisiko ausgesetzt bzw. unterliegen einer unzulässigen Eutrophierung (nur Stickstoff). Damit einher geht die Gefährdung der Biodiversität in Deutschland. Beim Schutz vor Versauerung zeigen die Maßnahmen zur Luftreinhaltung große Wirkung. So verminderte sich der Anteil an Ökosystemen, die von Überschreitungen des Critical Load für Säureeinträge betroffenen sind, von ehemals über 80 Prozent im Jahr 1990 auf nunmehr ca. 10 Prozent (Jahr 2011, seesalzkorrigiert). Deutlich geringere Entlastungen gab es beim Schutz vor Eutrophierung, wo auch im Jahr 2011 noch ca. 65 Prozent aller Ökosysteme durch Überschreitung der zulässigen Stickstoffeinträge gefährdet bleiben. Quelle: Forschungsbericht