Auflistung nach Autor:in "Ciais, Philippe"
Gerade angezeigt 1 - 3 von 3
- Treffer pro Seite
- Sortieroptionen
Veröffentlichung On the use of Earth Observation to support estimates of national greenhouse gas emissions and sinks for the Global stocktake process: lessons learned from ESA-CCI RECCAP2(2022) Bastos, Ana; Ciais, Philippe; Sitch, Stephen; Günther, DirkThe Global Stocktake (GST), implemented by the Paris Agreement, requires rapid developments in the capabilities to quantify annual greenhouse gas (GHG) emissions and removals consistently from the global to the national scale and improvements to national GHG inventories. In particular, new capabilities are needed for accurate attribution of sources and sinks and their trends to natural and anthropogenic processes. On the one hand, this is still a major challenge as national GHG inventories follow globally harmonized methodologies based on the guidelines established by the Intergovernmental Panel on Climate Change, but these can be implemented differently for individual countries. Moreover, in many countries the capability to systematically produce detailed and annually updated GHG inventories is still lacking. On the other hand, spatially-explicit datasets quantifying sources and sinks of carbon dioxide, methane and nitrous oxide emissions from Earth Observations (EO) are still limited by many sources of uncertainty. While national GHG inventories follow diverse methodologies depending on the availability of activity data in the different countries, the proposed comparison with EO-based estimates can help improve our understanding of the comparability of the estimates published by the different countries. Indeed, EO networks and satellite platforms have seen a massive expansion in the past decade, now covering a wide range of essential climate variables and offering high potential to improve the quantification of global and regional GHG budgets and advance process understanding. Yet, there is no EO data that quantifies greenhouse gas fluxes directly, rather there are observations of variables or proxies that can be transformed into fluxes using models. Here, we report results and lessons from the ESA-CCI RECCAP2 project, whose goal was to engage with National Inventory Agencies to improve understanding about the methods used by each community to estimate sources and sinks of GHGs and to evaluate the potential for satellite and in-situ EO to improve national GHG estimates. Based on this dialogue and recent studies, we discuss the potential of EO approaches to provide estimates of GHG budgets that can be compared with those of national GHG inventories. We outline a roadmap for implementation of an EO carbon-monitoring program that can contribute to the Paris Agreement. © 2023 BioMed CentralVeröffentlichung The consolidated European synthesis of CH4 and N2O emissions for the European Union and United Kingdom: 1990-2017(2021) Petrescu, Ana Maria Roxana; Qiu, Chunjing; Ciais, Philippe; Günther, DirkReliable quantification of the sources and sinks of greenhouse gases, together with trends and uncertainties, is essential to monitoring the progress in mitigating anthropogenic emissions under the Paris Agreement. This study provides a consolidated synthesis of CH4 and N2O emissions with consistently derived state-of-the-art bottom-up (BU) and top-down (TD) data sources for the European Union and UK (EU27 + UK). We integrate recent emission inventory data, ecosystem process-based model results and inverse modeling estimates over the period 1990-2017. BU and TD products are compared with European national greenhouse gas inventories (NGHGIs) reported to the UN climate convention UNFCCC secretariat in 2019. For uncertainties, we used for NGHGIs the standard deviation obtained by varying parameters of inventory calculations, reported by the member states (MSs) following the recommendations of the IPCC Guidelines. For atmospheric inversion models (TD) or other inventory datasets (BU), we defined uncertainties from the spread between different model estimates or model-specific uncertainties when reported. In comparing NGHGIs with other approaches, a key source of bias is the activities included, e.g., anthropogenic versus anthropogenic plus natural fluxes. In inversions, the separation between anthropogenic and natural emissions is sensitive to the geospatial prior distribution of emissions. Over the 2011-2015 period, which is the common denominator of data availability between all sources, the anthropogenic BU approaches are directly comparable, reporting mean emissions of 20.8 Tg CH4 yr-1 (EDGAR v5.0) and 19.0 Tg CH4 yr-1 (GAINS), consistent with the NGHGI estimates of 18.9 +/- 1.7 Tg CH4 yr-1. The estimates of TD total inversions give higher emission estimates, as they also include natural emissions. Over the same period regional TD inversions with higher-resolution atmospheric transport models give a mean emission of 28.8 Tg CH4 yr-1. Coarser-resolution global TD inversions are consistent with regional TD inversions, for global inversions with GOSAT satellite data (23.3 Tg CH4 yr-1) and urface network (24.4 Tg CH4 yr-1). The magnitude of natural peatland emissions from the JSBACH-HIMMELI model, natural rivers and lakes emissions, and geological sources together account for the gap between NGHGIs and inversions and account for 5.2 Tg CH4 yr-1. For N2O emissions, over the 2011-2015 period, both BU approaches (EDGAR v5.0 and GAINS) give a mean value of anthropogenic emissions of 0.8 and 0.9 Tg N2Oyr-1, respectively, agreeing with the NGHGI data (0.9 +/- 0.6 TgN2Oyr-1). Over the same period, the average of the three total TD global and regional inversions was 1.3 +/- 0.4 and 1.3 +/- 0.1 Tg N2Oyr-1, respectively. The TD and BU comparison method defined in this study can be operationalized for future yearly updates for the calculation of CH4 and N2O budgets both at the EU+UK scale and at the national scale. The referenced datasets related to figures are visualized at https://doi.org/10.5281/zenodo.4590875 (Petrescu et al., 2020b). © Author(s) 2021.Veröffentlichung The fingerprint of the summer 2018 drought in Europe on ground-based atmospheric CO2 measurements(2020) Ramonet, Michel; Ciais, Philippe; Apadula, F.; Meinhardt, FrankDuring the summer of 2018, a widespread drought developed over Northern and Central Europe. The increase in temperature and the reduction of soil moisture have influenced carbon dioxide (CO2) exchange between the atmosphere and terrestrial ecosystems in various ways, such as a reduction of photosynthesis, changes in ecosystem respiration, or allowing more frequent fires. In this study, we characterize the resulting perturbation of the atmospheric CO2 seasonal cycles. 2018 has a good coverage of European regions affected by drought, allowing the investigation of how ecosystem flux anomalies impacted spatial CO2 gradients between stations. This density of stations is unprecedented compared to previous drought events in 2003 and 2015, particularly thanks to the deployment of the Integrated Carbon Observation System (ICOS) network of atmospheric greenhouse gas monitoring stations in recent years. Seasonal CO2 cycles from 48 European stations were available for 2017 and 2018. Earlier data were retrieved for comparison from international databases or national networks. Here, we show that the usual summer minimum in CO2 due to the surface carbon uptake was reduced by 1.4 ppm in 2018 for the 10 stations located in the area most affected by the temperature anomaly, mostly in Northern Europe. Notwithstanding, the CO2 transition phases before and after July were slower in 2018 compared to 2017, suggesting an extension of the growing season, with either continued CO2 uptake by photosynthesis and/or a reduction in respiration driven by the depletion of substrate for respiration inherited from the previous months due to the drought. For stations with sufficiently long time series, the CO2 anomaly observed in 2018 was compared to previous European droughts in 2003 and 2015. Considering the areas most affected by the temperature anomalies, we found a higher CO2 anomaly in 2003 (+3 ppm averaged over 4 sites), and a smaller anomaly in 2015 (+1 ppm averaged over 11 sites) compared to 2018. © 2020 The Author(s)