Person:
Krug, Alexander

Loading...
Profile Picture
Email Address
Birth Date
Research Projects
Job Title
Last Name
Krug
First Name
Alexander
Name

Search Results

Now showing 1 - 2 of 2
  • Publication
    Occurrence and coupling of heat and ozone events and their relation to mortality rates in Berlin, Germany, between 2000 and 2014
    (2019) Fenner, Daniel; Holtmann, Achim; Krug, Alexander
    Episodes of hot weather and poor air quality pose significant consequences for public health. In this study, these episodes are addressed by applying the observational data of daily air temperature and ozone concentrations in an event-based risk assessment approach in order to detect individual heat and ozone events, as well as events of their co-occurrence in Berlin, Germany, in the years 2000 to 2014. Various threshold values are explored so as to identify these events and to search for the appropriate regressions between the threshold exceedances and mortality rates. The events are further analyzed in terms of their event-specific mortality rates and their temporal occurrences. The results reveal that at least 40% of all heat events during the study period are accompanied by increased ozone concentrations in Berlin, particularly the most intense and longest heat events. While ozone events alone are only weakly associated with increased mortality rates, elevated ozone concentrations during heat events are found to amplify mortality rates. We conclude that elevated air temperatures during heat events are one major driver for increased mortality rates in Berlin, but simultaneously occurring elevated ozone concentrations act as an additional stressor, leading to an increased risk for the regional population. Quelle: https://www.mdpi.com
  • Publication
    The contribution of air temperature and ozone to mortality rates during hot weather episodes in eight German cities during the years 2000 and 2017
    (2020) Fenner, Daniel; Krug, Alexander; Mücke, Hans-Guido
    Hot weather episodes are globally associated with excess mortality rates. Elevated ozone concentrations occurring simultaneously also contribute to excess mortality rates during these episodes. However, the relative importance of both stressors for excess mortality rates is not yet known and assumed to vary from region to region. This study analyzes time series of daily observational data of air temperature and ozone concentrations for eight of the largest German cities during the years 2000 and 2017 with respect to the relative importance of both stressors for excess mortality rates in each city. By using an event-based risk approach, various thresholds for air temperature were explored for each city to detect hot weather episodes that are statistically associated with excess mortality rates. Multiple linear regressions were then calculated to investigate the relative contribution of variations in air temperature and ozone concentrations to the explained variance in mortality rates during these episodes, including the interaction of both predictors. In all cities hot weather episodes were detected that are related to excess mortality rates. Across the cities, a strong increase of this relation was observed around the 95th percentile of each city-specific air temperature distribution. Elevated ozone concentrations during hot weather episodes are also related to excess mortality rates in all cities. In general, the relative contribution of elevated ozone concentrations on mortality rates declines with increasing air temperature thresholds and occurs mainly as a statistically inseparable part of the air temperature impact. The specific strength of the impact of both stressors varies across the investigated cities. City-specific drivers such as background climate and vulnerability of the city population might lead to these differences and could be the subject of further research. These results underline strong regional differences in the importance of both stressors during hot weather episodes and could thus help in the development of city-specific heat-ozone-health warning systems to account for city-specific features. © Author(s) 2020.