Auflistung nach Autor:in "Manders, Astrid"
Gerade angezeigt 1 - 1 von 1
- Treffer pro Seite
- Sortieroptionen
Veröffentlichung Weitergehende Untersuchungen zu Auswirkungen des Klimawandels auf die Ozonkonzentration in Deutschland (KliwO)(Umweltbundesamt, 2023) Manders, Astrid; Mohammadi, Sadegh; Schaap, Martijn; Nederlandse Organisatie voor Toegepast-Natuurwetenschappelijk Onderzoek; Deutschland. UmweltbundesamtOzon ist ein Luftschadstoff mit negativen Auswirkungen auf die menschliche Gesundheit und auf die Vegetation. Seit den 1990er Jahre sind die Ozonkonzentrationen in Europa aufgrund von Emissionsreduzierungen zurückgegangen. Der Klimawandel wird jedoch die Bedingungen, die die Ozonbildung begünstigen, verstärken, was zu mehr Überschreitungen der Ozonrichtwerte führen kann. Wir haben den Einsatz von Methoden des Maschinellen Lernens (ML) untersucht, um Beziehungen zwischen jährlichen oder saisonalen Klimakennzahlen und der jährlichen Anzahl von Überschreitungen eines Ozonschwellenwertes für Messstandorte in Deutschland im Zeitraum 1995-2018 herzustellen, wobei Messungen aus den Messnetzen der Bundesländer und des UBAs und COSMO-REA6 meteorologische Daten verwendet wurden. Die Vorhersagewerte (Prädiktand) waren die Anzahl der Tage pro Jahr, an denen der höchste tägliche 8-Stunden-Mittelwert (MDA8) von 120 mikrog/m3 überschritten wurden (Ozonüberschreitungen), und die Anzahl der Episoden (zwei oder mehr aufeinander folgende Tage mit einer Ozonüberschreitung). Als Variablen (Prädiktoren) wurden unterschiedliche Klimakennzahlen (z. B. Anzahl Sommertage/Trockentage/tropische Nächte, Indikatoren zu Windrichtung und relativer Feuchte) und Stationsmerkmale verwendet. Für das Maschinelle Lernen wurde H2O AutoML verwendet. Es wurden getrennte ML-Modelle für normale (weniger als 55 Überschreitungen pro Jahr) und extreme Werte (55 oder mehr Überschreitungen) entwickelt. Für die normalen Werte waren Temperaturindikatoren (Anzahl der tropischen Nächte/Sommertage) neben Informationen über den Breitengrad, die Stationshöhe und die Stationsklassifizierung die einflussreichsten Variablen. Bei den extremen Werten wurden die Auswirkungen von Strahlung, relativer Luftfeuchte und Wind dominanter. Für die normalen Werte war die Güte der ML-Modelle angemessen, für die extremen Werte waren die Ergebnisse jedoch weniger robust. Bei den ML-Modellen handelte es sich um sogenannte "relationship fitting"-Modelle, die auf neue Jahre und Stationen angewendet werden können, aber nicht für Emissionsszenarien. Sie sind weniger gut für die genaue Vorhersage extremer Bedingungen geeignet. Es ist zu empfehlen, die Klimadatensätze monatlich oder saisonal aggregiert statt jährlich aggregiert zu speichern. Es sollte zudem ein Indikator für die relative Luftfeuchtefestgelegt werden, weil diese Variable eine wichtige Rolle in Prozessen im Bereich der Luftqualität spielt. Quelle: Forschungsbericht