Auflistung nach Autor:in "Huppertsberg, Sven"
Gerade angezeigt 1 - 2 von 2
- Treffer pro Seite
- Sortieroptionen
Veröffentlichung Polystyrene microplastics do not affect juvenile brown trout (Salmo trutta f. fario) or modulate effects of the pesticide methiocarb(2020) Schmieg, Hannah; Huppertsberg, Sven; Knepper, Thomas P.; Ruhl, Aki SebastianBackground There has been a rising interest within the scientific community and the public about the environmental risk related to the abundance of microplastics in aquatic environments. Up to now, however, scientific knowledge in this context has been scarce and insufficient for a reliable risk assessment. To remedy this scarcity of data, we investigated possible adverse effects of polystyrene particles (104 particles/L) and the pesticide methiocarb (1 mg/L) in juvenile brown trout (Salmo trutta f. fario) both by themselves as well as in combination after a 96 h laboratory exposure. PS beads (density 1.05 g/mL) were cryogenically milled and fractionated resulting in irregular-shaped particles (<50 (micro)m). Besides body weight of the animals, biomarkers for proteotoxicity (stress protein family Hsp70), oxidative stress (superoxide dismutase, lipid peroxidation), and neurotoxicity (acetylcholinesterase, carboxylesterases) were analyzed. As an indicator of overall health, histopathological effects were studied in liver and gills of exposed fish. Results Polystyrene particles by themselves did not influence any of the investigated biomarkers. In contrast, the exposure to methiocarb led to a significant reduction of the activity of acetylcholinesterase and the two carboxylesterases. Moreover, the tissue integrity of liver and gills was impaired by the pesticide. Body weight, the oxidative stress and the stress protein levels were not influenced by methiocarb. Effects caused by co-exposure of polystyrene microplastics and methiocarb were the same as those caused by methiocarb alone. Conclusions Overall, methiocarb led to negative effects in juvenile brown trout. In contrast, polystyrene microplastics in the tested concentration did not affect the health of juvenile brown trout and did not modulate the toxicity of methiocarb in this fish species. © The Author(s) 2020Veröffentlichung Polystyrene Microplastics modulate the toxicity of the hydrophilic insecticide Thiacloprid for Chironomid Larvae and also influence their burrowing behavior(2022) Krais, Stefanie; Anthes, Nils; Huppertsberg, Sven; Ruhl, Aki SebastianAs there is still little knowledge of interactions between microplastics (MP) and hydrophilic compounds, we propose ways the toxicity of hydrophilic pesticides can be modulated by MP, when sorption can be excluded. Larvae of Chironomus riparius were exposed to thiacloprid (TH, 1 mikrog/L) and polystyrene microplastic particles (PS; <50 mikrom; 150,000 and 1,000,000 particles/L) for 96 h, solely or in co-exposure. Burrowing behavior and mortality were observed. Larvae in treatments containing PS established themselves quicker in the sediment and kept the ability to rebury for a longer time compared to control and TH, respectively. While TH elevated the mortality, exposure to PS alone did not affect the survival of the larvae. In co-exposure of TH and PS, a concentration of 150,000 particles/L significantly reduced the toxicity of 1 mikrog/L TH after 96 h, an effect that was not observed at 1,000,000 particles/L. Therefore, we hypothesize that this modulation of the toxicity of TH eventually may have resulted from a combination of a "protective MP layer" in the gut and a higher retention time of particles in larvae exposed to 150,000 particles/L than in those exposed to 1,000,000 particles/L due to the lower number of ingestible particles in the former. © 2022 by the authors