Auflistung nach Autor:in "Filter, Josefine"
Gerade angezeigt 1 - 5 von 5
- Treffer pro Seite
- Sortieroptionen
Veröffentlichung Fate of leaf litter deposits and impacts on oxygen availability in bank filtration column studies(2018) Bayarsaikhan, Uranchimeg; Filter, Josefine; Gernert, Ulrich; Ruhl, Aki SebastianDegradation of particulate organic carbon (POC) such as leaf litter might deplete dissolved oxygen within the upper layers of bank filtration, an efficient and robust barrier for pathogens and for various organic micro-pollutants (OMP) in water supply systems worldwide. The degradation of OMP during bank filtration depends on the redox conditions. The present study aimed at identifying the impacts and fates of different local leaves on the oxygen consumption and the possible biological degradation of indicator OMP. Oxygen concentrations initially decreased within the columns from around 8 mg/L in the influent to low concentrations indicating extensive consumption within a short travel distance. Still a substantial oxygen consumption was observed after 250 days. OMP concentrations were not significantly affected by the microbial processes. A layer of calcium carbonate crystallites was observed on the POC layer. Some leaf fragments appeared to be persistant towards degradation and the carbon content relative to nitrogen and sulfur contents decreased within 250 days. The results demonstrate that trees at bank filtration sites might have a strong long-term impact on the subsurface redox conditions. © 2018 Elsevier Inc. All rights reserved.Veröffentlichung Impacts of autochthonous particulate organic matter on redox-conditions and elimination of trace organic chemicals in managed aquifer recharge(2023) Filter, Josefine; Ermisch, Till; Jekel, Martin; Ruhl, Aki SebastianAutochthonous carbon fxation by algae and subsequent deposition of particulate organic matter can have signifcant efects on redox conditions and elimination of trace organic chemicals (TOrCs) in managed aquifer recharge (MAR). This study investigated the impacts of diferent algae loadings (0-160 g/m2) and infltration rates (0.06-0.37 m/d) on overall oxygen consumption and elimination of selected TOrCs (diclofenac, formylaminoantipyrine, gabapentin, and sulfamethoxazole) in adapted laboratory sand columns. An infltration rate of 0.37 m/d in conjunction with an algae load of 80 g/m2 (dry weight) sustained oxic conditions in the sand bed and did not afect the degradation of TOrCs. Thus, the availability of easily degradable organic carbon from algae did not infuence the removal of TOrCs at an infuent concentration of 1 Ìg/L. In contrast, a lower infltration rate of 0.20 m/d in combination with a higher algae loading of 160 g/m2 caused anoxic conditions for 30 days and signifcantly impeded the degradation of formylaminoantipyrine, gabapentin, sulfamethoxazole, and diclofenac. Especially the elimination of gabapentin did not fully recover within 130 days after pulsed algae deposition. Hence, measures like micro-sieving or nutrient control are required at bank fltration or soil aquifer treatment sites with low infltration rates. © The Author(s) 2023Veröffentlichung In-situ fixed bed denitrification in sequential biofiltration: laboratory testing of solid substrates(2020) Filter, Josefine; Bosinsky, Christin; Kilinc, Sefine Oksal; Ruhl, Aki SebastianHigh nitrate concentrations in wastewater treatment plant effluents and aquifers can challenge sequential biofiltration systems in preventing nitrite and gas formation in the sand bed, as well as to achieve the regulated limit value for nitrate in potable water reuse applications. This study investigates the introduction of electron donors in the form of organic fixed bed materials as an in-situ anoxic zone into sequential biofiltration systems. Laboratory batch and column tests with straw, soft wood, peat, polylactic acid (PLA), and polycaprolacton (PCL) revealed incomplete denitrification with a hydraulic retention time below 10 h, high organic carbon leaching, especially during the first three months, and gas accumulation within the filter bed. Therefore, ex-situ denitrification prior to oxic biofilters or in a defined side-stream treatment is recommended. No enhanced transformation of trace organic chemicals was observed under nitrate reducing conditions. Peat revealed a sorption potential for 5-methyl-benzotriazole, carbamazepine, benzotriazole, and metoprolol. © 2020 The AuthorsVeröffentlichung Influence of low oxygen concentrations on biological transformations of trace organic chemicals in sand filter systems(2023) Filter, Josefine; Kopp, Marianne G. V.; Ruhl, Aki SebastianManaged aquifer recharge systems for drinking water reclamation are challenged by trace organic chemicals (TOrCs) since some of them are poorly retained. Although a lot of research has been done to investigate biological transformation of TOrCs in sand filter systems, there are still uncertainties to predict the removal. A laboratory column system with two different filter sands was set up to test TOrC transformation, the influence of low oxygen concentrations as well as the adaptation and influence of spiked TOrC influent concentrations. Bioactivity was quantified with the fluorescence tracer resazurin. In the experiment, a low elimination performance in the first column segment, defined as lag zone, was observed, implying incomplete adaptation or inhibiting co-factors. To assess these lag zones and to determine the dissipation time DT50 for 50% removal, a modified Gompertz model was applied. For acesulfame, formylaminoantipyrine, gabapentin, sulfamethoxazole, and valsartan acid DT50 of less than 10 h were observed, even when influent oxygen concentrations decreased to 0.5 mg/L. In general, TOrC transformations in technical sand with lower bioactivity and especially valsartan acid transformation responded very sensitive to low influent oxygen concentrations of 0.5 mg/L. However, in well adapted sand originating from soil aquifer treatment (SAT) with sufficient bioactivity, TOrC removal was hardly affected by such suboxic conditions. Furthermore, increasing the influent concentrations of TOrCs to 10 ÎÌg/L was found to promote adaptation especially for acesulfame and sulfamethoxazole. Benzotriazole, carbamazepine, diclofenac and venlafaxine were recalcitrant under the applied experimental conditions. © 2023 ElsevierVeröffentlichung Varying attenuation of trace organic chemicals in natural treatment - a review of key influential factors(2021) Filter, Josefine; Zhiteneva, Veronika; Ruhl, Aki Sebastian; Vick, CarstenThe removal of trace organic chemicals (TOrCs) from treated wastewater and impacted surface water through managed aquifer recharge (MAR) has been extensively studied under a variety of water quality and operating conditions and at various experimental scales. The primary mechanism thought to dictate removal over the long term is biodegradation by microorganisms present in the system. This review of removal percentages observed in biologically active filtration systems reported in the peer-reviewed literature may serve as the basis to identify future indicators for persistence, as well as variable and efficient removal in MAR systems. A noticeable variation in reported removal percentages (standard deviation above 30%) was observed for 24 of the 49 most commonly studied TOrCs. Such variations suggest a rather inconsistent capacity of biologically active filter systems to remove these TOrCs. Therefore, operational parameters such as the change in dissolved organic carbon ((Delta)DOC) during treatment, hydraulic retention time (HRT), filter material, and redox conditions were correlated to the associated TOrC removal percentages to determine whether a data-based relationship could be elucidated. Interestingly, 11 out of the 24 compounds demonstrated increased removal with increasing (Delta)DOC concentrations. Furthermore, 10 compounds exhibited a positive correlation with HRT. Based on the evaluated data, a minimum HRT of 0.5-1 day is recommended for removal of most compounds. © 2021 Elsevier Ltd.