Auflistung nach Autor:in "De Wit, Cynthia A."
Gerade angezeigt 1 - 2 von 2
- Treffer pro Seite
- Sortieroptionen
Veröffentlichung Identifying emerging environmental concerns from long-chain chlorinated paraffins towards German ecosystems(2022) Yuan, Bo; Rüdel, Heinz; Koschorreck, Jan; De Wit, Cynthia A.Germany is one of several major European producers of chlorinated paraffins (CPs). This study showed that not only the legacy short-chain products (SCCPs, C10-13), but also the current-use medium- and long-chain products (MCCPs, C14-17; LCCPs, C>17) as well as the very-short-chain impurities (vSCCPs, C<10) are ubiquitous in the 72 samples collected from the coastal, terrestrial, and freshwater ecosystems across the country. The concentrations of LCCPs surpassed those of the other CPs in 40% of the biota samples. Archived bream samples collected downstream of a CP-manufacturing factory showed decreasing temporal trends of (v)SCCPs and relatively constant levels of MCCPs from 1995 to 2019; however, the overall levels of LCCPs have increased by 290%, reflecting the impact of chemical regulation policies on changes in CP production. A visualization algorithm was developed for integrating CP results from various matrices to illustrate spatial tendencies of CP pollution. Higher levels of (v)SCCPs were indicated in the former West Germany region, while MCCP and LCCP concentrations did not seem to differ between former East and West Germany, suggesting relatively equal production and use of these chemicals after the German Reunification. The results provide an early warning signal of environmental concerns from LCCPs on the eve of their booming global production and use. © 2021 The Author(s).Veröffentlichung Organohalogen compounds of emerging concern in Baltic Sea biota: Levels, biomagnification potential and comparisons with legacy contaminants(2020) De Wit, Cynthia A.; Bossi, Rossana; Dietz, Rune; Koschorreck, Jan; Treu, GabrieleWhile new chemicals have replaced major toxic legacy contaminants such as polychlorinated biphenyls (PCBs) and dichlorodiphenyltrichloroethane (DDT), knowledge of their current levels and biomagnification potential in Baltic Sea biota is lacking. Therefore, a suite of chemicals of emerging concern, including organophosphate esters (OPEs), short-chain, medium-chain and long-chain chlorinated paraffins (SCCPs, MCCPs, LCCPs), halogenated flame retardants (HFRs), and per- and polyfluoroalkyl substances (PFAS), were analysed in blue mussel (Mytilus edulis), viviparous eelpout (Zoarces viviparus), Atlantic herring (Clupea harengus), grey seal (Halichoerus grypus), harbor seal (Phoca vitulina), harbor porpoise (Phocoena phocoena), common eider (Somateria mollissima), common guillemot (Uria aalge) and white-tailed eagle (Haliaeetus albicilla) from the Baltic Proper, sampled between 2006 and 2016. Results were benchmarked with existing data for legacy contaminants. The mean concentrations for (Sigma)OPEs ranged from 57 to 550 ng g-1 lipid weight (lw), for (Sigma)CPs from 110 to 640 ng g-1 lw for (Sigma)HFRs from 0.42 to 80 ng g-1 lw, and for (Sigma)PFAS from 1.1 to 450 ng g-1 wet weight. Perfluoro-4-ethylcyclohexanesulfonate (PFECHS) was detected in most species. Levels of OPEs, CPs and HFRs were generally similar or higher than those of polybrominated diphenyl ethers (PBDEs) and/or hexabromocyclododecane (HBCDD). OPE, CP and HFR concentrations were also similar to PCBs and DDTs in blue mussel, viviparous eelpout and Atlantic herring. In marine mammals and birds, PCB and DDT concentrations remained orders of magnitude higher than those of OPEs, CPs, HFRs and PFAS. Predator-prey ratios for individual OPEs (0.28-3.9) and CPs (0.40-5.0) were similar or somewhat lower than those seen for BDE-47 (5.0-29) and HBCDD (2.4-13). Ratios for individual HFRs (0.010-37) and PFAS (0.15-47) were, however, of the same order of magnitude as seen for p,p'2-DDE (4.7-66) and CB-153 (31-190), indicating biomagnification potential for many of the emerging contaminants. Lack of toxicity data, including for complex mixtures, makes it difficult to assess the risks emerging contaminants pose. Their occurence and biomagnification potential should trigger risk management measures, particularly for MCCPs, HFRs and PFAS. © 2020 The Author(s)